

DAV!DSON LABORATORY

REPORT SIT-DL-76-1880 April 1976

HYDRODYNAMIC MODEL EVALUATION
OF A SERIES OF PLANING LVA CONCEPTS

bу

P. Ward Brown

Prepared for Code 03221 of Naval Sea Systems Command under

Office of Naval Research Contract N00014-75-C-0746 Project No. NR 062-510 (Davidson Laboratory Project 4355/181)

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

DISCLAIMER NOTICE

THIS DOCUMENT IS BEST QUALITY AVAILABLE. THE COPY FURNISHED TO DTIC CONTAINED A SIGNIFICANT NUMBER OF PAGES WHICH DO NOT REPRODUCE LEGIBLY.

SECURITY CLASSIFICATION OF THIS PAGE (When Date Entered)

	REPORT DOCUMENTATION PAGE	READ INSTRUCTIONS BEFORE COMPLETING FORM				
/	REPORT NUMBER 2. GOVT ACCESSION NO.	3. RECIPIENT'S CATALOG NUMBER				
4	SIT-DL-76-188Ø	(9)				
	HYDRODYNAMIC MODEL EVALUATION OF A SER'ES OF PLANING LVA CONCEPTS.	NOVER STORY OF REPORT & PERIOD COVERED APPLIES TO STORY OF STORY O				
_	7. AUTHOR(e)	8. CONTRACT OR GRAN NUMBER(*)				
	P. Ward Brown	NØØØ14-75-C-Ø746 14/E 32 12 Project No NR-Ø62-518				
	PERFORMING ORGANIZATION NAME AND ADDRESS Davidson Laboratory Stevens Institute of Technology Castle Point Station, Hoboken, NJ 07030	10. PROGRAM SEEMENT, PROJECT TASK AREA & WORK UNIT NUMBERS				
	Code 03221 Naval Sea Systems Command	Apr 11 1976				
	14. MONITORING AGENCY NAME & AODRESS(II dillerent from Controlling Office)	15. SECURITY CLASS (of this report)				
	Office of Naval Research 12145p.	UNCLASSIFIED 15. DECLASSIFICATION/ODWNGRADING SCHEOULE				
	16. DISTRIBUTION STATEMENT (of this Report)	<u> </u>				
	APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIN					
	18. SUPPLEMENTARY NOTES					
	19. KEY WOROS (Continue on reverse side if necessary and identity by block number)					
	Planing; Habitability; Seakeeping; Amphibious	Craft				
	20. ABSTRACT (Continue on reverse side if necessary and identity by block number) The results of hydrodynamic model tests of suitable for an LVA planing-hull concept are pres. The performance, seakeeping and habitability char together with the effects of fitting bow flaps, of the transom flap is shown to be an efficient meth factory performance is obtained without the use of impact accelerations are well below the habitabil	a series of four hulls ented and analyzed. eacteristics are discussed, thine flaps and transom flaps. nod of trim control. Satis- of chine flaps and the				

DD 1 JAN 73 1473

EDITION OF I NOV 68 IS OBSOLETE

UNCLASSIFIED / 150

STEVENS INSTITUTE OF TECHNOLOGY DAVIDSON LABORATORY CASTLE POINT STATION HOBOKEN, NEW JERSEY

REPORT SIT-DL-76-1880 April 1976

HYDRODYNAMIC MODEL EVALUATION

OF A SERIES OF PLANING LVA CONCEPTS

by

P. Ward Brown

Prepared for

Code 03221 of Naval Sea Systems Command under

Office of Naval Research Contract N00014-75-C-0746

Project No. NR-062-510

(Davidson Laboratory Project 4355/181)

Approved

Daniel Savitsky Deputy Director

ACCESSION for

HTTS RELESTATED

GOO ENGLISHED CO

BHATE CONTROL

JUSTIC COLORED

BY

GREAT TOLE ON AVAILABILITY CO. 58

L. Avail a la Special

R-1880

TABLE OF CONTENTS

	Page
ABSTRACT	iii
INTRODUCTION	1
MODELS	2
APPARATUS AND INSTRUMENTATION	3
DATA PROCESSING	4
TEST PROGRAM AND TECHNIQUE	6
TEST PROCEDURE	8
RESULTS	9
Performance Results	9
Seakeeping Results	12
DISCUSSION	13
Performance and Seakeeping Characteristics of S-5 Configuration .	13
Performance	13
Seakeeping	14
Habitability	15
Effect of Hull Form on Performance and Seakeeping	16
Performance	16
Seakeeping	16
Habitability	17
Effects of Appendages	17
Transom Flaps	17
Chine Flaps	19
Effect of Inclined Thrust Axis on Performance	20
CONCLUSIONS	22
ACKNOWLEDGEMENT	24

E

R-1880

				Page
REFERENCES	 •	 . •	•	25
TABLES 1-14				
FIGURES 1-20				
APPENDIX A				
TABLES A1-A4				
FIGURES A1-A4				

ABSTRACT

The results of hydrodynamic model tests of a series of four hulls suitable for an LVA planing-hull concept are presented and analyzed. The performance, seakeeping and habitability characteristics are discussed, together with the effects of fitting bow flaps, chine flaps and transom flaps. The transom flap is shown to be an efficient method of trim control. Satisfactory performance is obtained without the use of chine flaps and the impact accelerations are well below the habitability criterion.

KEYWORDS

Planing
Seakeeping
Habitability
Amphibious Craft

INTRODUCTION

One of the candidate design concepts for the LVA craft is a hard chine, low deadrise, planing hull. Due to the dimensional constraints on the craft and the loadings associated with its mission the craft is more heavily loaded than conventional planing hulls. Preliminary model tests of two LVA planing hulls demonstrated the potential for meeting the design objectives. On the basis of these results it was appropriate to explore other design options with the objectives of further reducing the drag in waves and improving the rough water habitability.

Together with the two designs already tested a total of four hull designs were investigated. Variations in hull form included inverted vee-bottom, flat bottom, lowered bow profile and lowered bow profile with deadrise. These hull forms were tested with a variety of appendages including bow flaps, chine flaps and transom flaps. The overall hull dimensions and displacement were the same for all configurations.

A development type test program was used to select the most promising configurations which were then evaluated in some depth. The objective of the program was to identify those configurations having either improved rough water performance or improved rough water habitability and to determine their hydrodynamic characteristics. These characteristics include EHP requirements in calm water and waves and statistics of the loads and motions in waves, including 1/3-octave rms acceleration analysis. These results are intended to provide fundamental data on the hydrodynamic performance of highly loaded planing hulls in rough water which may be applied in the LVA design process to evaluate options and select the optimum configuration.

This study is in support of a development program initiated by Code 03221 of the Naval Sea Systems Command. Technical monitoring was provided by the LVA Office, David Taylor Naval Ship Research and Development Center (DTNSRDC).

MODELS

The four 1/12-scale models were constructed of polyurethane foam, reinforced with fiberglass sheet and covered with glass cloth and resin. All mules were 28 ft overall length, 11.0 ft beam and 7 ft deep. (Throughout this report all quantities are expressed in terms of corresponding full-size values.) The following hull forms were investigated:

_	· ·
Model Designation	Description
P-1	An inverted vee-bottom hull configured by DTNSRDC.
S - 1	A flat-bottom hull otherwise identical to P-1.
S-3	A flat-bottom hull similar to S-1 but with a lowered bow profile.
s- 5	A flat-bottom hull having the same keel profile as S-3 but incorporating deadrise in the bow region for 25% of the overall length aft of the

region for 25% of the overall length aft of the forward perpendicular: the maximum deadrise at the FP was 20 degrees decreasing to zero at a point 25% LOA aft of FP.

The hull profiles and sections are shown on Figure 1.

Various appendages were fitted to these models including:

Bow Flap 4.7 ft chord by 11.5 ft span, 34 degree angle of attack, fitted to Model S-3 only, attached to keel at FP.

Chine Flaps 19.6 ft chord by 3 ft span, trailing edge 2.4 ft forward of AP, fitted to Models P-1 and S-1.

- 15 ft chord by 3.5 ft span, trailing edge 6 ft forward of AP, fitted to Models S-3 and S-5.
- 45 degree deadrise flap fitted to Model S-5.
- 4 ft and 8 ft chord by 6 ft span, leading edge
 23.4 ft forward of AP, fitted to Model S-5 only.

Transom Flaps 3 ft chord by 11.0 ft span fitted to Model S-1 only.

- 3 ft chord by 6.5 ft span fitted to all models.
- 6 ft and 9 ft chord by 6.5 ft span fitted to Model S-5 only. Leading edge of all flaps 2.4 ft forward of AP.

The appendages are shown on Figure 2.

The part-span transom flaps were adjustable in 2.5 degree increments from -2.5 degrees (upward deflection) to +15 degrees (downward deflection). In the case of the horizontal chine flaps fitted to Model S-3, the aft 3 ft of each flap was hinged and could be adjusted to a maximum downward angle of 15 degrees.

The bottoms of the models were scribed with a l inch grid for the purpose of estimating wetted lengths from underwater photographs.

The model was towed through a pitch pivot located at the nominal center of gravity: LCG 12.5 ft forward of transom (AP) and VCG 3.5 ft above baseline. Ballast weights were located in the model for adjusting the LCG and pitch radius of gyration which was set at 7.0 ft. Accelerometers were mounted in the model at bow, LCG and stern located 24 ft, 12.5 ft and 4 ft respectively forward of the transom.

Leading particulars of the models are summarized in Table 1.

APPARATUS AND INSTRUMENTATION

The model tests were carried out in Davidson Laboratory's Tank 3 test facility. The test set-up and model S-5 are shown in Figure 3. This setup allows the model freedom in pitch and heave, with restraint in yaw, roll and sway. Test instrumentation included a 50 lb capacity drag balance, heave and pitch transducers to measure the motions at and about the pitch axis, located at the model LCG, and bow, CG, and stern accelerometers. In rough water, a wave strut attached to the towing carriage was mounted to record the wave profile.

The signals from the transducers were relayed by overhead cables to the data station on shore where they were filtered (40 Hz low pass),

recorded on magnetic tape and processed by an on-line PDP-8e computer, which includes an analog-to-digital converter. The required model results were printed on a teletype and also stored on digital magnetic tape. All data channels were monitored on an oscillograph. A camera carriage, mounted ahead of the main carriage, included a black and white television camera which was used to observe the model tests on a shore based TV monitor. A video-tape recording was also made of each run. Underwater pictures were taken of most smooth water tests to determine the model wetted lengths and areas.

For the rough water tests the Tank 3 plunger type wave maker was used to make both regular and irregular waves. The irregular waves generated consist of a reproducible set of 100 waves having a variance density approximating the Pierson-Moskowitz spectrum. The spectrum used in these tests had a significant height of 2.2 ft and is compared with the Pierson-Moskowitz spectrum on Figure 4.

DATA PROCESSING

The instrumentation was calibrated by applying known displacements to the motion transducers and wave strut, known loads to the drag balance, and gravity multiples to the accelerometers. All calibrations were recorded on analog magnetic tape and processed by the on-line computer. All calibrations were linear and a "least-squares" technique was used to determine the calibration rates, which were spot-checked daily.

Test results were computed from the differences between the transducer outputs in the zero and running conditions. Drag zeros were taken with the model floating on the water in calm conditions, twice a day, and stored in the computer; the floating drag zero was monitored for stability between each run. All other zeros were taken with the model in the air at zero trim and known elevation above the water surface. After the model was up to speed data was collected over a 140 ft section of the tank.

During data collection all channels of information were scanned at a rate of 250 Hz and the results stored in the computer for appropriate processing.

In the case of calm water tests mean values of drag, trim and draft were computed. The draft is defined as the immersion, relative to calm water, of the point formed by the intersection of the aft perpendicular (transom) with the base line. The velocity was computed from the time taken to travel through the 140 ft data-collection section.

For the tests in regular waves the mean drag was computed and a harmonic analysis was carried out for the heave, pitch and acceleration channels. The harmonic analysis performed on the regular wave time histories is a least squares fit of each data channel using the equation

$$y(t) = y_m + \sum_{n} r_n \cos[n\omega t - (\phi_n - n\phi_{\theta, 1})], \quad 0 < (\phi_n - n\phi_{\theta, 1}) < 2\pi$$

where

y(t) = fitted time history to data channel

y_ = mean value

n = 1/2, 1,2,3 frequency multiples

r = amplitude of each frequency component

w = fundamental frequency of encounter

 φ_n = phase angle relative to the time at which digitizing began

 $\phi_{\theta,1}$ = phase angle associated with the pitch fundamental frequency

The fundamental frequency of encounter was obtained in the PDP-8e computer by noting sequential up-or-down zero crossings of the moving wave strut. The frequency components at one-half, one, two and three times the fundamental were then computed and used in the fitting equation above. A time shift was then introduced so as to make the phase lag in the pitch fundamental equal to zero. Thus, the phase angles on all channels are relative to this particular frequency component.

For the irregular wave tests the velocity and mean drag were computed and a peak-trough analysis performed for the heave, pitch and acceleration channels. The peak-trough analysis computes for each signal the mean, rms, and statistics of the peaks and troughs (maxima and minima), i.e. the 1/3 and 1/10 highest. In the statistical analysis spurious oscillations are suppressed by means of "buffers." (Buffers are selected so as to prevent the detection of substantial maxima and minima in corresponding steady-state

calm water runs. A substantial maximum (minimum) is defined as any maximum (minimum) succeeded by a decrease (increase) in signal level at least equal to the magnitude of the stipulated buffer size.) Typical buffers employed in these tests were 1.0 degree pitch, 0.2 inch heave, 0.1 g acceleration, and 0.2 inch wave. In addition, for selected runs, spectral analyses of the vertical accelerations at the C.G. were performed and converted to 1/3-octave rms format for comparison with the habitability criteria.

The wetted areas of the models were measured from underwater photographs after the tests. Because of the small or zero deadrise of the models an average value of the wetted length across the beam of the model was determined. This average value defines the position of the leading edge of the wetted area. This position is reported relative to the transom and is referred to as the mean wetted length (MWL).

TEST PROGRAM AND TECHNIQUE

The test program was conducted in three phases and it is convenient to discuss each phase selarately.

Phase 1 Tests

These tests were concerned with calm water tests of Models P-1 and S-1 both with and without chine flaps, and rough water tests of Model P-1 with and without chine flaps and S-1 with chine flaps. The results of these preliminary tests have been reported previously.

The test technique employed in calm water provided for unloading the model to simulate the effect of the vertical component of the thrust due to trim, and for applying pitching moments to simulate the thrust moment. In the rough water tests thrust unloading was not simulated and all tests were made at a displacement of 55,000 lb. In this exploratory phase of rough water testing only one pass down the tank was made at each condition resulting in approximately 30 wave encounters out of the 100 available.

Phase 2 Tests

This test phase was concerned with comparative calm water and rough water tests of Model P-1 and S-1 without chine flaps, of Model S-3 with and without chine flaps and with bow flap extended and retracted.

In these tests, in order to properly identify the added resistance in waves, thrust unloading was not simulated and all models were tested at a displacement of 55,000 lb. Furthermore in the wave tests repeat runs were made at each condition, starting at a different point in the irregular wave train, to obtain a total of approximately 90 wave encounters.

Phase 3 Tests

In the third phase of testing Model S-5 was tested in calm water and waves with a variety of appendages to provide the basis for selecting the optimum configuration for the chine flap and transom flap.

The test program was set-up to identify the most promising configuration of Model S-5 in irregular waves, the primary criteria being the hump drag at 15 knots and the CG accelerations at 30 knots. The most suitable configuration would then be selected, with the advice of the LVA Office, DTNSRDC, for calm water evaluation.

With these objectives in mind the test procedure in waves provided for all testing at one displacement of 55,000 lb and one pass at each condition. Comparison of the Phase I and Phase 2 tests showed that increasing the number of wave encounters had negligible effect on both the added resistance in waves and on the rms accelerations. In the calm water tests, instead of simulated thrust unloading, displacements of 55,000 lb, 49,70% lb and 44,400 lb were tested. This technique is more time consuming than simulated thrust unloading but the data may then be used to account for the effect of arbitrary shaft angle, in addition a basis is provided for a limited extrapolation to greater design gross weights than 55,000 lb.

TEST PROCEDURE

All tests were made with the model free to trim and heave, and restrained in roll, yaw and sway. Calm water and rough water tests were made at constant speed. It has been shown that constant speed rough water tests of planing hulls provide results identical to those obtained free-to-surge at constant thrust.

The bulk of the tests were run with the model ballasted to represent 55,000 lb, LCG 12.5 ft, VCG 3.5 ft and pitch radius of gyration equal to 7 ft. Test speeds of 10, 15, 20, 25, 30 and 35 knots were used, with the emphasis on the hump speed of 15 knots and the required speed of 30 knots in irregular head seas having significant height 2.2 ft.

For each configuration tested the chief parameter was the deflection of the transom flap. Repeat runs at the same condition with different flap settings, in both calm water and waves, resulted in curves of resistance and rms acceleration as functions of trim from which optima could be picked off. Additionally some runs were made at LCG's of 10.5 ft and 13.5 ft, in these cases the pitch pivot was moved to the new LCG and the model re-ballasted so as to properly simulate a CG shift in rough water. Calm water tests of Model S-5 were also made with various applied moments in order to define the variation of hydrodynamic pitch moment with trim.

For the tests in irregular waves a Pierson-Moskowitz spectrum having a significant height of 2.2 ft was used throughout the program. Regular wave tests were made with Model S-5 at speeds of 15, 20, 25 and 30 knots. Three regular wave trains were used: 1.8 ft high by 63 ft long, 1.8 ft high by 110 ft long and 3.6 ft high by 110 ft long.

Color motion pictures were taken of selected conditions in Phase 2. An edited movie sequence is presented in Table 2. Full-scale time is simulated when this movie is projected at 16 frames per second. Video tape records were made of all runs.

RESULTS .

It is desirable that the results of this series of development tests of the LVA planing hull be presented in a comparative form so as to clearly identify the design options available. Toward the end of the third phase of testing it appeared that Model S-5, without chine flaps and with a part-span 6 ft transom flap, was the favored candidate design and was therefore more extensively tested than other configurations. Consequently S-5 is made the basis of comparison and the performance of other configurations is given relative to S-5, with the emphasis on performance in waves having a significant height of 2.2 ft.

Performance Results

The resistance of Model S-5, without chine flaps, for an LCG of 12.5 ft and trimmed by the transom flap, in both calm water and waves has been expanded to full-scale and is presented in Tables 3, 4, 5 and 6 for speeds of 15, 20, 25 and 30 knots. The method of expansion is described in Appendix A where the raw model data is also presented.

The full-scale bare-hull S-5 resistance data is tabulated in terms of the displacement (or load-on-water) and trim, in order to allow performance prediction at any shaft angle. The forces acting on the hull are illustrated in the following sketch:

Vector Diagram of Forces on Planing Hull

For vertical and horizontal equilibrium

$$\Delta = W - T \sin(\tau + \theta) \tag{1}$$

$$R = T \cos(\tau + \theta) \tag{2}$$

and eliminating the thrust from Equations (1) and (2):

$$\Delta = W - R \tan(\tau + \theta) \tag{3}$$

To find the resistance for a given speed (Tables 3 to 6), the constant-trim resistance contours are plotted as a function of load-on-water, Δ . For a given displacement, W, and shaft angle, θ , the constant-trim load contours given by Equation (3) are superimposed and the resistance read off at the equilibrium points of intersection. This process is illustrated on Figure 5, using the data in Table 6, to find the resistance of the S-5 configuration at 30 knots in 2.2 ft significant height-waves, for a displacement of 55,000 lb and with a shaft angle of 15 degrees. In the lower part of the figure the equilibrium resistance is plotted as a function of trim to show the minimum resistance and optimum trim angle.

Hence the EHP may be found from the product of the bare hull resistance and speed (in feet per second) divided by 550. Estimates of the shaft horsepower are dependent upon appendage drag, propeller characteristics and machinery which, with one exception, have not been considered in this study.

This procedure is applied in the Discussion Section of this report to illustrate the comparative performance of the different hull designs, for a given displacement and shaft angle, and to show the effect of displacement and shaft angle on a given design.

In the procedure described, the balance of moments is not taken into account. Considering operation at the optimum trim of 7 degrees shown on the lower part of Figure 5 it is probable that the thrust vector will apply a bow-up moment to the craft tending to drive the trim away from optimum. In order to restore the craft to optimum trim it will be necessary to increase the deflection of the transom flap, and indeed it is the moment equilibrium which determines the flap setting for optimum trim. This change in flap setting to restore the craft to optimum trim will not affect the performance of the craft. To demonstrate this point the relative effects on performance of flap deflection and applied moment, e.g. CG shift, must be considered. These effects are illustrated on Figure 17. At the top of the figure it can be seen that the optimum trim with flap deflection is 6 degrees. Suppose that the craft is operating at this point with zero applied moment. When the bow-up thrust moment is applied, the drag will move along the "Flap Deflection" curve in the direction of increasing trim. Increasing the flap deflection, to operate at optimum trim with thrust moment, will cause the drag to decrease along this curve to the same minimum drag. The flap-deflected drag is lower because of the reduced wetted area due to flap lift, and balancing the thrust moment by increased flap deflection will reinforce this effect. The equilibrium flap deflection may be found from the data in Table A4, for a specific shaft angle and location as illustrated later.

The increment in total rough water resistance, relative to S-5, for the various configurations is presented in Tables 7 and 8. The derivation of these results is discussed in the Appendix. It is appropriate

to tabulate the rough water increment since performance in rough water is one of the major criteria. Due to the exploratory nature of the tests it is in any event not generally possible to document the calm water increments: for example the calm water drag of Model S-5 with horizontal chine flaps has not been measured at this time.

To illustrate the use of Tables 7 and 8 suppose that the resistance of Model S-3 is required at 55,000 lb, a speed of 30 knots and at trim of 7 degrees. From Table 6 the resistance of S-5 at this condition is 11,010 lb and from Table 8 the increment for S-3, without chine flaps is 1190 lb. Thus the resistance of S-3, without chine flaps in 2.2 ft significant waves, at 55,000 lb load on water, 30 knots and 7 degrees trim is 12,200 lb.

Seakeeping Results

The results of the tests in irregular waves, in terms of full-scale values are given in Tables 9 to 13. For each configuration the results are ordered by velocity and flap deflection, and the number of wave encounters is noted. Statistics are given for the various data channels including: pitch, heave, bow acceleration, CG acceleration and stern acceleration. For each channel the statistics of the response are given in the following order: the signal mean and rms, the number of oscillations, the average of peaks and the troughs, (averages of maxima and minima), and the averages of the 1/3 highest peaks and troughs.

Values of the 1/10 highest peaks and troughs are not reported because the confidence bounds on these statistics are, in general, too broad due to the relatively small number of wave encounters.

The regular wave test results for Model S-5 are presented in Table 14, again in terms of full scale values. The speed; wave length, height and period; mean model drag, and number of wave encounters are noted. For the wave, pitch, heave, bow acceleration, CG acceleration and stern acceleration, the amplitude of the signal at one-half, one, two and three times the fundamental frequency is given together with the phase angles relative to the fundamental pitch response.

DISCUSSION

Performance and Seakeeping Characteristics of S-5 Configuration

Performance

The performance characteristics of the S-5 configuration without chine flaps, at 55,000 lb displacement with an LCG of 12.5 ft, are shown on Figure 6. The resistance in calm water and waves, 2.2 ft significant height, is shown together with the trim and transom draft. These results were obtained with the shaft-line assumed to be parallel to the keel and are tabulated below, the mean trims and drafts are the same in calm water and waves.

S-5 PERFORMANCE AT 55,000 lb.

SPEED	TRIM	RESI	STANCE	TRANSOM	LOAD ON
lennan	daamaaa	CALM	WAVES	DRAFT	WATER IN WAVES
knots	degrees	lb.	16.	ft.	16.
0	0.8	-	•	3.5	55,000
10	2.5	7,000	7,000	4.7	54,700
15	15.0	18,300	18,300	5.9	50,100
20	13.0	13,550	14,480	3.9	51,700
25	10.0	10,760	12,110	2.5	52,900
30	7.0	8,700	10,790	1.8	53,700

The trims are the optima for this configuration with a 6 ft chord transom flap, (6.5 ft flap span). Increasing the chord of this flap from 3 ft to 6 ft reduced the drag but a further increase to 9 f. caused increased hump resistance due to the stern wave collapsing on the aft part of the flap.

To find the corresponding flap deflection at each trim it is necessary to balance the moments. Assuming the parallel shaft is 3.5 ft below the keel and with a VCG of 3.5 ft, at 15 knots there will be a bow-up moment of 132,600 ft-1b. From the model data presented in the Appendix, at 15 knots and 50,100 lb displacement (7.3 fps and 28 lb model scale) the pitch stiffness is 16,230 ft-1b/degree for zero flap deflection.

Hence the applied thrust moment would increase the trim 8.2 degrees. Correspondingly from the data taken at zero moment, the flap stiffness is -1.5 degrees/degree of trim, hence an increase in flap deflection of 12.3 degrees is required to offset the trim increase due to thrust moment. The data taken with zero moment shows that to run at 15 degrees trim a flap deflection of -5.6 degrees would be needed. Thus the equilibrium flap setting at 15 knots is 12.3 - 5.6 = 6.7 degrees for the assumed shaft angle and location.

Similarly at 30 knots a flap angle of 6.0 degrees is predicted. Evidently the flap setting, and other performance characteristics, depend on the assumed position of the propeller shaft. This is especially important in the case of highly loaded planing hulls which develop unusually large hump trim angles. It is desirable that the model data be collected over a sufficient parametric range in order to maintain flexibility in the design process.

Seakeeping

The seakeeping characteristics may be discussed in terms of the rms values of the motions and accelerations, for it can be shown from the data that the significant double amplitude (or significant height) is equal to 4 times the rms value within 5 percent. This suggests that the accelerations and motions are Rayleigh distributed. Moreover, at all speeds, the bow rms acceleration (11.5 ft forward of the LCG) is twice the CG rms acceleration and the stern rms acceleration (8.5 ft aft of the LCG) is 75 percent of the CG value.

For the \$-5 configuration, without chine flaps, at 55,000 lb displacement in waves of 2.2 ft significant height, the rms values of the heave and pitch motions and the CG acceleration are shown on Figures 7, 8 and 9. It is evident that the motions and accelerations increase with speed and that the seakeeping characteristics deteriorate with increasing trim, especially at the higher speeds. It is generally possible to improve seakeeping at the expense of performance by running at less than optimum trim and this option may be considered as part of the design process.

The seakeeping characteristics as a function of speed are shown on Figure 10, for the optimum trim at each speed as given on Figure 6.

<u>Habitability</u>

The habitability characteristics of the S-5 configuration, without chine flaps, at 55,000 lb displacement in irregular waves having a significant height of 2.2 ft is shown on Figure 11 for speeds of 15, 20, 25 and 30 knots. The data is presented in the ISO format and includes the ISO "fatigue-decreased proficiency" (FDP) acceleration limit for a one hour exposure time. 3

It is evident that the 30 knot habitability is most severe, although comfortably below the ISO one hour limit: the ISO boundary is not defined below 1 Hz. At 30 knots the peak rms occurs in the 1/3-octave having a center frequency of 0.8 Hz. The wave spectrum has its peak energy at a frequency of 0.25 Hz, Figure 4, and at 30 knots this corresponds to an encounter frequency of 0.87 Hz.

From the habitability data for the S-5 shown in Figure 11, and from the data for the other configurations, a simple relationship was found between the maximum 1/3-octave rms and the total rms CG acceleration.

As shown on Figure 12, the peak value of the habitability curve is equal to half the value of the total rms acceleration.

Thus a table can be drawn up which relates the various statistical acceleration parameters to the rms CG acceleration by the factor shown:

<u>Parameter</u>	<u>Factor</u>			
Maximum 1/3-octave rms	0.5			
Significant double amplitude	4.0			
1/10 highest double amplitude	5.0			
Bow rms acceleration	2.0			
Stern rms acceleration	0.75			

It follows, for instance, that the peak of the habitability curve is equal to the significant double amplitude acceleration divided by 8. This peak occurs at an encounter frequency corresponding to the peak in the wave spectrum. These simple relations suggest that during the

development stage of a planing LVA it is sufficient to measure only the rms CG acceleration to characterize the habitability of the craft, however all parameters should be measured for the final design.

The relationships with the rms CG acceleration have only been demonstrated for the heavily loaded, zero deadrise type of craft considered in this study. They should not be taken to apply to other planing craft without further research.

Effect of Hull Form on Performance and Seakeeping

Performance

The comparative rough water performance of the P-1, S-1, S-3 and S-5 configurations is shown on Figure 13 in the form of EHP curves from 15 to 30 knots. In each case the displacement is 55,000 lb, the propeller shaft is assumed parallel to the keel and the significant wave height is 2.2 ft.

In chronological order of development, modifying the inverted-vee form of the P-1 to the flat-bottomed S-1, reduces the hump drag 18 percent at 15 knots with a small drag penalty at 30 knots. Lowering the bow profile of S-1 to get the S-3 configuration effectively rotates the force vector at the bow away from the horizontal and toward the vertical. This results in lowered drag at 30 knots and correspondingly some increase in vertical acceleration. The drag at the hump speed of 15 knots increases due to the more bluff bow entry presented by the lowered profile. Finally, adding deadrise to the S-3 over the forward 25 percent of the length yields the S-5 configuration. The eased entry into waves thereby obtained results in a hull form having the least drag of those tested to this point in development.

Seakeeping

The heave and pitch motions of the four hull designs, at a displacement of 55,000 lb, are compared on Figures 14 and 15. The invertedvee hull, P-1, is the most lively of the designs studied, being significantly more responsive to waves above speeds of 20 knots. A general

improvement in seakeeping has been achieved in the course of development; both the heave and pitch motions have been reduced 40% at 30 knots in progressing from the P-1 to the S-5 configuration.

Habitability

Since the most severe accelerations are encountered at 30 knots it is appropriate to compare the C.G. accelerations for the four hulls at this maximum speed, in the ISO form of habitability charts. This comparison is presented on Figure 16.

The S-3 configuration has the largest peak 1/3-octave rms acceleration and the S-1 the smallest. The peak values are tabulated below:

Configuration	Peak 1/3-octave RMS Acceleration g units	Peak Acceleration Relative to S-5	Half-power Bandwidth Hz		
P-1	. 143	108	.46		
S-1	. 127	95	.65		
S - 3	. 147	111	.61		
S - 5	.133	100	.55		

This table shows that there is relatively little difference between the peak accelerations, all the data being within 16%. There is rather more variability in the width of the response. In particular Configuration P-1 exhibits more response at low frequency which could be a problem relative to motion sickness. At a frequency of 1 Hz all the designs are better than 40% below the ISO 1 hour FDP boundary.

Effects of Appendages

Transom Flaps

It can be shown that it is generally better, in the sense of producing higher L/D ratios, to use as large a flap as possible and to minimize the deflection, within the constraint of leaving sufficient deflection range for control purposes. A brief series of experiments with the S-5 configuration at hump speed showed drag benefits resulted

from increasing the flap chord from 3 ft to 6 ft, however further increase to 9 ft caused a drag penalty due to the stern wave collapsing on the flap.

Transom flaps are the most efficient means for trimming a planing hull. Since increasing the flap deflection causes the craft to trim down, and because the seakeeping characteristics improve as the trim decreases (Figures 7, 8 and 9), it follows that the seakeeping characteristics may be significantly improved by transom flap deflection as previously reported. A similar decrease in trim, however, could be achieved by a forward shift of the CG, assuming that the designer has sufficient disposable load, which is not always the case. Disregarding this consideration, it is not immediately obvious that trimming the craft with transom flaps is more efficient than shifting the CG.

The reason for the efficiency of the transom flap as a means of trim control, relative to CG shift, lies in the superior performance obtained with the flap and is illustrated in Figure 17, prepared from data taken with the S-5 configuration. The upper part of this figure shows that higher L/D ratio (lower R/W) can be obtained with flap deflection than with CG shift. The reason for this improved L/D ratio is shown in the middle chart where, for trims less than 8 degrees, less wetted area is required for the hull with deflected flap at given trim. This is due to the lift generated by flap deflection. The power of this flap can be deduced from the lower chart, which shows that each degree of flap deflection is equivalent to a 1 ft forward shift of the LCG.

At trims greater than 8 degrees the same L/D ratio is obtained either with flap or CG shift; in this region the drag is due to induced drag and friction. As the trim is reduced below optimum the drag increases due to the form drag associated with bow immersion. The upper chart on Figure 17 makes it clear that while flap deflection is beneficial, to both performance and seakeeping, it can be over done. For the case shown increasing the flap deflection from 0 to 5 degrees increases the L/D ratio 18 percent, for the same LCG position, however a further increase to 7.5 degrees deflection causes a decrease in L/D ratio of 79 percent.

Chine Flaps

Fitting chine flaps to the hull improves performance and degrades habitability. This situation is summarized on Figure 18 for the S-5 configuration with and without the 15 ft x 3.5 ft chine flaps, (Figure 2). The chine flaps reduced the drag 24 percent at 15 knots and 9 percent at 30 knots. At 30 knots the peak 1/3-octave rms acceleration was increased 80 percent by chine flaps and the response broadened. The increased response at low frequency may have implications relative to motion sickness, however ISO criteria have not been developed below 1 Hz since these criteria are primarily concerned with vibration.

Adding chine flaps effectively reduces the beam loading of the hull with predictable results in rough water: the drag is decreased and the CG acceleration increased. In this specific case, however, the degradation in habitability does not seem worth the improvement in performance. It was therefore decided, with the advice of the LVA Office, to concertrate on obtaining satisfactory performance without chine flaps.

Frior to this decision some variations on the chine flap concept were investigated and these are shown on Figure 2. The use of an adjustable trailing edge flap indicated that the rms acceleration could be reduced, but only by 10% relative to the 3-5 with chine flap, and therefore was not pursued.

The effect of using high aspect ratio chine flaps or "chine wings" was briefly investigated. The intention here was to locate the wings sufficiently far forward so that they would be wet at 15 knots, and thus reduce hump drag, but dry at 30 knots so as to avoid increasing the acceleration. This ideal was only approached with the small, 4 ft chord, wing. Relative to the S-5 without chine flaps the hump drag was reduced 11 percent. At 30 knots there was no effect or drag but the CG rms acceleration was still increased 33 percent.

The 45 degree chine flap was an attempt at a compromise and succeeded about as well as could be expected. Relative to the S-5 without chine flap the hump drag was decreased 16 percent. At 30 knots the drag increased 14 percent and the rms acceleration increased 11 percent.

This compromise appeared promising enough to start calm water testing over the speed range. The effect of pitch moment was determined but this calm water series was abandoned before the effect of flap deflection had been determined due to the decision to proceed without chine flaps.

A brief investigation of the response in regular waves was also made with the S.5 fitted with 45 degree chine flaps. Data of this type is needed to characterize the seakeeping in swell conditions. The results obtained with the longest wave, having a period of 4.6 seconds and a length of 110 ft are shown on Figure 19. As would be expected, the response is non-linear above a speed of 15 knots. On the basis of these results it is estimated that the natural frequency in pitch is 0.7 Hz and in heave 0.5 Hz.

Effect of Inclined Thrust Axis on Performance

The results discussed so far have all been concerned with the performance predicted for the various configurations with the propeller shaft parallel to the keel, or more generally to allow for water-jet propulsion, with the thrust axis parallel to the keel. For conventional planing hulls the hump trim rarely exceeds 7 degrees and the inclination of the shaft might also be 7 degrees. Thus the total angle of the shaft at hump speed is less than 15 degrees. The load on water at the hump speed, allowing for the vertical component of the thrust, is usually therefore of the order of 96 percent of the displacement. Although the effect of thrust unloading is always simulated in model tests, it is not a very significant effect and would usually not be worth discussing.

The situation for the heavily loaded hulls considered in this study is quite different. The hump trim is 15 degrees and, in at least one application, a shaft line inclination to the keel of 15 degrees is being considered. This results in a total thrust angle of 30 degrees at the hump and a load on water equal to only 90 percent of the displacement, and this is significant.

The effect of shaft angle on the S-5 configuration, without chine flaps, is shown on Figure 20. The inclined shaft accounts for a reduction

in drag of 13 percent at 15 knots and 5 percent at 30 knots. While there may be a penalty to pay in propeller efficiency, it is remarkable that the drag of these heavily loaded hulls can be reduced so much by this simple change in the machinery installation.

CONCLUSIONS

Model tests of a series of planing hulls were conducted in order to provide a data base to identify the design options available for a planing LVA concept. Due to the dimensional constraints on this hull concept, with a design gross weight of 55,000 lb, the hulls are heavily loaded and there is little margin for refinement of design. Nonetheless, the series developed exhibits progressively reduced drag in waves while maintaining the same acceptable g level, or habitability. The following conclusions apply to operation in head seas of 2.2 tt significant height at a displacement of 55,000 lb and an LCG 12.5 ft forward of the transom, with a transom flap fitted for trim control.

A flat bottom hull is better than inverted-vee hull, having lower drag, lower CG acceleration and reduced motion response to waves. A lowered bow profile reduces the high speed resistance, with a small penalty in hump drag and vertical acceleration. The addition of positive deadrise in the bow region overcomes these penalties and results in the lowest drag over the speed range of 15 to 30 knots.

The transom flap is a most efficient method of trim control. The flap permits operation at a lower trim and lower drag than would otherwise be possible. As a consequence of the reduced trim the seakeeping and habitability characteristics are improved.

A margin of 40% below the ISO habitability criteria (one hour fatigue decreased proficiency boundary) was achieved by all hulls.

Horizontal chine flaps, which decrease the beam loading, are an effective means of improving performance but exact a heavy penalty in habitability increasing the g load 80% at 30 knots. Chine flaps with 45 degree deadrise reduce the hump drag at 15 knots and increase the 30 knot drag, the g loads however are only increased 11%.

The bow accelerations are twice those at the CG while the stern acceleration are 75% of those at the CG. The significant double amplitudes of the motions and accelerations are four times the corresponding rms values. The 1/3-octave rms acceleration is equal to half the value of the total rms acceleration.

This study is of an exploratory nature and some aspects have not been considered; for example the behavior in following seas. It is therefore recommended that designs based on this data be subject to in-depth evaluation.

ACKNOWLEDGEMENT

A number of Davidson Laboratory staff members contributed to this study by conducting the test programs and performing the data reduction, and the author would like to acknowledge their help. They include Mr. Gerard Fridsma, Mr. Michael Chiocco, Mr. Walter Klosinski and Mr. Christopher Reyling. Mr. John Roper, of Roper Associates, contributed to all aspects of this study. Thanks are also due to Mr. David Halper, Code 112, of the LVA Office, DTNSRDC, for his encouragement and for providing technical direction at critical points in the development process.

REFERENCES

- Savitsky, Daniel; Numata, Edward, and Chiocco, Michael: "Preliminary Hydrodynamic Model Tests of Several LVA Planing Hull Concepts," Davidson Laboratory Report 1840, October 1975
- Fridsma, Gerard: "A Systematic Study of the Rough-Water Performance of Planing Boats (Irregular Waves - Part II)," Davidson Laboratory Report 1495, March 1971
- ISO: "Guide for the Evaluation of Human Exposure to Whole-Body Vibration," International Standard 2631, First Edition, 1974-07-01
- Brown, P.W.: "An Experimental and Theoretical Study of Planing Surfaces with Trim Flaps," Davidson Laboratory Report 1463, April 1971

TABLE 1

LEADING PARTICULARS OF PLANING LVA CONCEPT

Displacement, 1b	55,000
Length overall, ft	28
Beam, ft	11
Depth, ft	7
Center of gravity	
Forward of transom, LCG, ft	12.5
Above baseline, VCG, ft	3.5
Pitch radius of gyration, ft	7
Static trim, degrees	0.84
Static transom draft, ft	3.5

TABLE 2

MOVIE SEQUENCE OF TESTS IN CALM WATER AND

WAVES 2.2 FT SIGNIFICANT HEIGHT, DISPLACEMENT 55,000 LB

			Tran	som Fla	p Def	lection	n, deg	rees	
Speed		-2.5	0	2.5	5	7.5	10	12.5	15
knots	CONFIGURATION P-1, 12.5 F	t LCG							
20	Calm Water				4	6	8		
	Waves	1	2	3	5	7	9	10	
30	Calm Water			13	15	17			
	Waves	11	12	14	16	18	9	20	
	CONFIGURATION P-1, 10.5 F	t LCG							
20	Calm Water						26	28	30
	Waves	22	22	23	24	25	27	29	31
30	Calm Water				32	34	36		
	Waves				33	35	37		
	CONFIGURATION S-1, 12.5 F	t LCG							
50	Calm Water				38	40	42		
	Waves				39	41	43		
30	Calm Water			44	46	48			
	Waves			45	47	49			

TABLE 2.2

CONFIGURATION S-3, 12.5 FT LCG, BOW FLAP RETRACTED AND EXTENDED

		Transom	Flap	Defle	ction,	deg ree s
Speed knots		0	2.5	5	7.5	10
15	Calm Water	50		53		56
	Waves	51		54		57
	Waves and Bow Flap	52		55		58
20	Calm Water and Bow Flap			59	61	63
	Waves and Bow Flap			6 0	62	64
30	Calm Water and Bow Flap			67	70	
	Waves		65	68		
	Waves and Bow Flap		66	69	71	
35	Calm Water			72		
	Waves			73		

TABLE 2.3

CONFIGURATION S-3 WITH CHINE FLAPS (a.k.a. S-4)

12.5 FT LCG, TRANSOM FLAP DEFLECTION 7.5 DEGREES
WITH BOW FLAP EXTENDED

		T.E.	Chine	Flap	Defl	ectio	n, degrees
Speed knots			-5	0	5	10	15
15	Calm Water			74	76	78	82
	Waves			75	77	79	83
	Transom Flap 10 degre	es					
	Calm Water					80	
	Waves					81	
20	Calm Water			84	8 6	88	
	Waves			85	87	89	
30	Calm Water		90	92	94	9 6	
	Waves		91	93	95		

TABLE 3

Speed: 15 Knots

			stance, 1b
Displacement	Trim	Calm	Significant
18,	degrees	Water	Height 2.2 ft
60,000	12	24,180	24,180
	14	24,150	24,150
	16	24,180	24,180
	18	24,290	24,290
55,000	12	21,450	21,450
	14	21,260	21,260
	16	21,060	21,060
	18	21,330	21,330
50,000	12	18,720	18,720
	14	18,320	18,320
	16	18,210	18,210
	18	18,640	18,640
1			
45,000	12	15,990	15,990
	14	15,530	15,530
	16	15,620	15,620
	18	16,220	16,220

TABLE 4

Speed: 20 Knots

		Resistance, 1b				
Displacement	Trim	Calm	Significant			
16	degrees	Water	Height 2.2 ft			
60,000	12	18,220	19,550			
	13	17,340	18,320			
	14	17,250	17,910			
	15	17,960	18,280			
		.= 5=5				
55,000	12	15,070	16,400			
	13	14,850	15,830			
	14	15,130	15,790			
	15	15,880	16,200			
50,000	12	12,600	13,930			
	13	12,870	13,850			
	14	13,560	14,220			
	15	14,460	14,780			
45,000	12	10,800	12,130			
	13	11,440	12,420			
	14	12,290	12,950			
	15	13,150	13,470			

TABLE 5

Speed: 25 Knots

		Resistance, 1b				
Displacement	Trim	Calm	Significant			
16	degrees	Water	Height 2.2 ft			
60,000	8	13,530	16,320			
	9	13,100	15,190			
	10	12,870	14,290			
	11	13,120	13,850			
55,000	8	11,710	14,500			
	9	11,210	13,300			
	10	11,210	12,630			
	11	11,990	12,720			
50,000	8	9,800	12,590			
	9	9,480	11,570			
	10	10,120	11,540			
	11	11,040	11,770			
45,000	8	7,970	10,760			
	9	8,440	10,530			
	10	9,260	10,680			
	11	10,090	10,820			

TABLE 6

F OF CONFIGURATION S-5

Speed: 30 Knots

		Resis	tance, 1b
Displacement lb	Trim degrees	Calm Water	Significant Height 2.2 ft
ID	degrees	water	nergiic 2.2 it
60,000	6	11,390	14,160
	7	9,760	11,890
	8	10,580	12,050
	9	11,540	12,370
	_		
55,000	6	9,140	11,910
	7	8,880	11,010
	8	9,660	11,130
	9	10,510	11,340
50,000	6	7,680	10,450
	7	8,030	10,160
	8	8,750	10,220
	9	9,520	10,350
45,000	6	6,690	9,460
	7	7,170	9,300
	8	7,800	9,270
	9	8,520	9,350

TABLE 7

DRAG INCREMENT, LB., RELATIVE TO S-5 WITHOUT CHINE FLAPS

Significant Wave Height 2.2 Ft S-5 CONFIGURATIONS 6 FT. TRANSOM FLAP

Speed knots	Trim degrees	Horizontal Chine Flaps	45 degree Chine Flaps	9 ft Transom Flap	4 ft Chine Wings
15	12	-5060	-2480	440	-2640
	14	-4990	-2700	280	-2680
	16	-4280	-2880	200	-2630
	18	- 2730	-3050	140	-2500
20	12	-3370			
	13	-1780			
	14	- 710			
	15	- 180			
30	6	-1650	1800		320
	7	-1030	1460		250
	8	- 710	1100		200
	9	- 530	760		120

TABLE 8

DRAG INCREMENT, LB.,
RELATIVE TO S-5 WITHOUT CHINE FLAPS

Significant Wave Height 2.2 Ft

		P-1 CONFIGURATION 3 FT TRANSOM FLAP			IGURATION NSOM FLAP	S-3 CONFIGURATION 3 FT TRANSOM FLAP	
Speed knots	Trim degrees	No Chine Flaps	With Chine Flaps	No Chine Flaps	With Chine Flaps	No Chine Flaps	With Chine Flaps
15	12	3320	-1780		-1780	1970	-3620
	14	3370	-1600		-1600	1690	- 2750
	16	3660	-1470		-1470	1540	-1920
	18	4100	•		-	1650	-1460
		!-		1.500	0.700	1060	2270
20	12	2340	-2100	1720	-2720	1060	-3370
	13	2790	-1240	1670	-1600	1150	-1780
	14	2700	- 780	1260	- 910	980	- 710
	15	2240	- 410	1310	- 410	530	- 180
25	8	1210	-3180		-3180		
	9	1580	-1970		-1970		
	10	1900	-1120		-1120		
	11	1990	- 730		- 730		
							16-4
30	6	2500		5130		1330	-1650
	7	2630		3960		1190	-1030
	8	2380		3270		550	- 710
	9	2060		2860		180	- 530

TABLE 9

MEAN AND RMS MODEL DATA FROM SEAKEEPING STATISTICS SIGNIFICANT HEIGHT = 2.2 IN. DISPLACEMENT = 31 LB

CONFIGURATION P-1 WITHOUT CHINE FLAPS LCG = 12.5 IN.

KUN	SPEED FPS	TRANSØM FLAP ANGLE DEG	MEAN PITCH DEG	MEAN DKAG LB	RMS BOW ACCEL G	RMS UG ACCEL G	RMS STERN ACCEL G
200	7 • 30	0.0	16.17	14.15	0.17	0.09	0.05
174	7 • 30	15.0	9.53	16.31	0.13	0.07	0.04
320	9.75	-2.5	18 • 13	12.32	0.36	0.17	0.11
202	9.75	0.0	16.69	11.80	0.34	0.16	0.07
321	9.75	0.0	17.02	11.55	0.37	0.18	0.11
314	9.75	2.5	16.08	10.98	0.36	0.17	0.12
313	9.75	5.0	14.90	10.63	0.36	0.17	0.12
316	9.75	7.5	14.00	10.67	0.35	0.17	0.12
317	9.75	10.0	13.14	10.80	0.33	0.16	0.12
318	9.75	12.5	11.16	10.92	0.27	0.14	0 • 11
163	9.75	15 · O	8.86	14.77	0.21	0.10	0.14
173	9.75	15.0	9.65	13.38	0.23	0 • 11	0.06
204	12.19	0.0	12.69	9 • 19	0.52	0.25	0.13
167	12.19	1C • O	8.60	8.52	0.41	0.20	0.11
165	12.19	12.5	7.62	9.68	0∙3ಕ	0.19	0 • 11
310	14.62	-2.5	10.34	9.81	0.94	0.51	U · 48
305	14.62	0.0	10.09	8.70	0.75	0 • 40	0.33
304	14.62	2.5	8.59	8.04	0 • 68	0.34	0.29
303	14.62	5.0	7.95	8 • 10	0.64	0.35	0.56
302	14.62	7 • 5	6.78	8.20	0.59	0.29	0.22
169	14.62	7.5	6 • 6 1	8.05	U• 58	0.60	0.16
168	14.62	10.0	5•7d	8.35	0.52	0.26	0.13
329	14.62	10.0	4.46	9 • 19	0 • 5੪	0.58	0.53
330	14.62	12.5	4.72	10.91	0.47	0.23	0.20
170	14.62	12.5	4.84	10 • 65	0 • 44	0.59	0.12
210	17.06	5.0	6 • 1 4	8 • 49	0.74	0 • 39	0.55
172	17.06	7 • 5	5.46	8 • 41	0.67	0.34	0.19
171	17.06	12.5	3.10	14.33	0 • 45	0.22	0.13

TABLE 9.2

CONFIGURATION P-1 WITHOUT CHINE FLAPS LCG = 10.5 IN.

KUN	SPEED FPS	TKANSØM FLAP ANGLE DEG	MEAN PITCH DEG	MEAN DRAG LB	RMS BØW ACCEL G	KMS CG ACCEL G	KMS STEKN ACCEL G
343	9.75	-2.5	20.69	13.88	0.43	0.16	0.09
342	9.75	0.0	20.12	13.49	0 • 42	0.16	0.09
341	9.75	2.5	19.12	12.88	0.42	0.16	0.10
339	9.75	5.0	18.28	12.61	0.43	0.17	0.10
340	9.75	7.5	17 • 11	11.52	0.44	0.17	0.11
344	9.75	10.0	16.12	11.03	0 • 48	0.18	0.12
345	9.75	12.5	15.23	10.91	0 • 48	0.19	0.13
346	9.75	15.0	14.00	10.39	0 • 48	0.18	0.13
369	14.62	5.0	10.32	8.99	0.97	0 • 49	0.47
364	14.62	7.5	8 • 17	7.62	0.91	0.68	0.37
363	14.62	10.0	6.95	7.70	0.74	0.32	0.27

CONFIGURATION P-! WITHOUT CHINE FLAPS LCG = 12.5 IN.

197	7 • 30	0.0	15.98	11.18	0.31	0.16	0.07
161	7 • 30	15.0	8 • 39	11.20	0.16	0.09	0.06
193	0.75	0.0	11.9೮	8.36	0.56	0.27	0 • 11
158	9.75	15.0	7 • 31	6.80	0 • 38	0.19	0.10
191	12.19	0.0	8 • 19	6.93	0.70	0.35	0.17
156	12.19	10.0	5.46	5.77	0.54	0.27	0.12
157	12.19	12.5	4.71	6.18	0 • 46	0.24	0.12
189	12.19	12.5	4.65	7 • 41	0 • 49	0.25	0.12
152	14.67	5.0	4.56	7 • 39	0.71	0.37	0 • 17
183	14.62	5.0	4.67	7.00	0.67	0.37	0 • 18
154	14.64	7.5	3.95	7 • 35	0.63	0.34	0.16
185	14.62	7.5	3.99	7.78	0.63	0.34	0.17
155	14.61	10.0	3.30	8.52	0.54	0.34	0.14
187	14.62	12.5	2.60	11.65	0 • 39	0.21	0.13
159	17.06	5.0	3.70	7.88	0.74	0.41	0.21
182	17.06	5.0	3.61	8.01	0.72	0.41	0.21
177	17.06	7.5	2.89	10.95	0.64	0.36	0.19

TABLE 9.3

CONFIGURATION S-1 WITHOUT CHINE FLAPS LCG = 12.5 IN.

		TRANSØM FLAP	MEAN	MEAN	KMS BOW	KM S CG	KM S STEKN
RUN	SPEED	ANGLE	PITCH	DRAG	ACCEL	ACCEL	ACCEL
KON	FPS	DEG		FR	G	G	G
	rrs	DEG	DEG	LD	G	G	ď
404	9.75	5.0	14.71	10.00	0.36	0.17	0.13
401	9.75	7.5	13.47	9.95	0.34	0.16	0.12
407	9.75	10.0	11.97	10.50	0.58	0.14	0.12
392	14.62	2.5	8 • 51	8.53	0.64	0.31	0.24
395	14.62	5.0	7.64	8.67	0.59	0.29	0.22
398	14.62	7.5	6 • 45	9 • 43	0.53	0.25	0.20
		CONF I GURAT	10N S-1	WITH CHIN	IE FLAPS		
			LCG = 1	2.5 IN.			
232	7.30	0.0	15.61	10.90	0.30	0.15	0.07
230	7 • 30	15.0	7 • 42	12.29	0.15	0.08	0.05
234	9.75	0.0	11-12	7.80	0.55	0.27	0.12
228	9.75	15.0	6.24	४• 43	0.32	0.17	0.10
22 6	12.19	0.0	7.54	6.62	0.70	0.35	0.16
224	12.19	12.5	5.33	6.84	0.57	0.29	0.14
218	14.62	2.5	4.66	7.00	0.73	0.39	0.20
220	14.62	5.0	4.04	7 • 13	0.68	0.36	0.19
222	14.62	7.5	3.35	8.21	0.57	0.31	0.20
216	17.06	2.5	3-45	7.91	0.77	0.44	0.24
212	17.06	5.0	2.88	8.63	0.68	0.39	0.20
15 4 4						_	

1.98 10.74

0 • 5ರ

0.32

0.18

17.06

214

7.5

TABLE 9.4

CONFIGURATION S-3 WITHOUT CHINE FLAPS BOW RAMP EXTENDED LCG = 12.5 IN.

		THANSOM			KM S	RMS	RM S
		FLAP	MEAN	MEAN	ROW	CG	STEKN
RUN	SPEED	ANGLE	PITCH	DHAG	ACCEL	ACCEL	ACCEL
	FPS	DEG	DEG	LB	G	G	G
453	7 • 31	0.0	17.91	12.91	0.23	0.11	0.08
451	7 • 31	5.0	15.19	12.19	0.22	0.10	0.09
455	7 • 31	10.0	12.27	12.03	0.21	0.10	0.10
425	9.75	5.0	14.72	9.62	0 • 40	0.19	0.13
428	9.75	7 • 5	13.53	9.31	0.38	0.18	0.13
431	9.75	10.0	12.33	9.26	0.36	0.17	0.14
416	14.63	2.5	8 • 58	6.96	0.69	0.35	0.28
419	14.63	5.0	7.70	7.08	0.65	0.32	0.25
422	14.63	7.5	6.58	7.50	0.62	0.30	0.24
		CONF I GURAT I	ON C_2	WITHOUT C	UINE ELADO		
		CONFIGURATI	UN 3-3	WITHOUT C	HINE PLACE	,	
		BOW RAMP	RETRACTE	D LCG =	12.5 IN.		
438	7.31	0.0	18.54	13.12	0.23	0 • 1 1	0.08
439	7 • 31	5.0	15.35	12.40	0.21	0.10	0.09
440	7 • 31	10.0	12.48	12.36	0.18	0.09	0∙0೪
434	14.63	2.5	8.63	7.06	0.70	0.35	0.27
437	14.63	5.0	7.75	7.02	0.65	0.34	0.26
111	17.04	5.0	5.04	7.50	0.74	0.34	0.39

TABLE 9.5

CONFIGURATION S-3 WITH CHINE FLAPS BOW RAMP EXTENDED LCG = 12.5 IN.

RUN	SPEED FPS	TRANSØM FLAP ANGLE DEG	CHINE FLAP ANGLE DEG	MEAN PITCH DEG	LB DKAG WEAN	KMS BØW ACCEL G	KMS CG ACCEL G	RMS STERN ACCEL G
470	7.31	7.5	0.0	16.37	10.52	0.34	0.17	0.11
471	7 • 31	7 • 5	5.0	15.50	10.15	0.33	0.16	0.11
472	7.31	7 • 5	10.0	14.93	10.02	0.34	0.17	0.12
501	7 • 31	10.0	10.0	14.30	9.75	0.33	0.16	0.12
498	7.31	7.5	15.0	14.46	10.00	0.34	0.17	0.12
483	9.75	7 • 5	0.0	10.68	7.09	0.56	0.28	0.17
480	9.75	7 • 5	5.0	9.60	6.73	0.56	0.27	0.17
477	9.75	7 • 5	10.0	8.49	6.62	0.55	0.27	0.18
494	14.62	7.5	-5.0	5.14	6.74	0.74	0.39	0.30
486	14.62	7 • 5	0.0	4. 45	6.79	0.68	0.36	0.28
488	14.62	7.5	5.0	3.37	7.25	0.64	0.34	0.58

TABLE 9.6

CONFIGURATION S-5 WITHOUT CHINE_FLAPS LCG = 12.5 IN.

RUN	SPEED FPS	TKANSOM FLAP ANGLE DEG	MEAN PITCH DEG	MEAN DRAG LB	RMS BØW ACCEL G	KMS CG ACCEL G	KMS STERN ACCEL G
62	4.68	0.0	0.51	4.45	0.25	0.07	0.09
63	4.83	0.0	1 • 47	4.92	0.25	0.08	0.09
26	7.33	-6.0	16.48	12.50	0.20	0.10	0.07
17	7.25	0.0	11.96	11.26	0.19	0.09	0.07
22	7.26	0.0	11.22	12.07	0.18	0.09	0.08
34	7.34	0.0	12.00	11.74	0.19	0.09	0.08
18	7.32	2.5	10.94	11.46	0.17	0.08	0.07
23	7 • 36	2.5	9.30	12.11	0.18	0.09	0.07
24	7 • 35	5.0	6.87	12.64	0.15	0.07	0.07
61	9.75	0.0	15.35	9 • 53	0.36	0.18	0.12
60	9.75	2.5	13.72	9.31	0.34	0.17	0.12
59	9.66	5.0	12.33	9.78	0 • 30	0.15	0.12
56	12.18	0.0	12.09	7 • 58	0 • 47	0.23	0.15
57	12.19	2.5	10.51	7 • 47	0.47	0.24	0.16
58	12.18	5.0	9 • 35	7.67	0 • 46	0.23	0 • 17
35	14.72	0.0		6.79	0.66	0.33	0.24
38	14.61	0.0	9.22	5.54	0.66	0.33	0.23
36	14.65	2.5	7.81	6.72	0.57	0.29	0.21
37	14.62	5.0	6.65	6.86	0.53	0.27	0.20

TABLE 9.7

CONFIGURATION S-5 WITH HORIZONTAL CHINE FLAPS LCG = 12.5 IN.

RUN	SPEED FPS	TRANSØM FLAP ANGLE DEG	CHINE FLAP ANGLE DEG	MEAN PITCH DEG	MEAN DRAG LB	HMS BØW ACCEL G	RMS CG ACCEL G	KMS STEKN ACCEL G
27	7.34	0.0	0.0	16.11	9.94	0.28	0 • 1 4	0.10
28	7.33	2.5	0.0	13.24	9.22	0.26	0.13	0.10
29	7.35	5.0	0.0	10.63	9 • 40	0.24	0.12	0.10
30	7.34	0.0	10.0	14.71	9.77	0.58	0.14	0.10
31	7.34	2.5	10.0	11.76	9.17	0.24	0.13	0.10
67	9.77	0.0	0.0	15.68	7.68	0.77	0.45	0.29
68	9.76	2.5	0.0	11.34	7 • 10	0.51	0.26	0.15
69	9.77	5.0	0.0	10.35	6.91	0.50	0.25	0.15
50	14.65	-6.0	0.0	9.29	7.11	1.03	0.61	0.50
39	14.62	0.0	0.0	6.56	6.13	0.84	0.44	0.33
49	14.64	0.0	0.0	7.31	6.22	0.84	0.47	0.34
40	14.62	2.5	0.0	5.78	6.67	0.73	0.41	0.28
41	14.61	5.0	0.0	4.80	7.01	0.63	0.34	0.23

TABLE 9.8

CONFIGURATION S-5 WITHOUT CHINE FLAPS LCG = 13.5 IN.

RUN 54	SPEED FPS	TRANSOM FLAP ANGLE DEG	MEAN PITCH DEG 9.03	MEAN DRAG LB	KMS BØW ACCEL G	G	KMS STERN ACCEL G
	CO	NF I GURAT I ON	1 S-5 WIT	TH HORIZO	NTAL CHIN	E FLAPS	
			LCG = 13				
52 53	14.64 14.65	0 • 0 0 • 0	6 • 50 6 • 48	6 • 68 6 • 41	0 • 68 0 • 68	0·37 0·37	
		CONF I GURAT	ION S-5	WITH 9 IN	. TRANSOM	FLAP	
			LCG = 1:				
,							
65 66 64	7 • 33 7 • 33 7 • 32	-6.0 -3.0 0.0		12.37 12.64 13.19	0·17 0·14 0·12	0.08 0.07 0.06	0.07 0.06 0.05
		CONF I GURAT	ION S-5	WITH 8 II	N. CHINE W	/I NGS	
				2.5 IN.			
70 71 72 74	7.33 7.31 7.31 7.32	0.0 2.5 5.0 10.0	18.58	11.92 11.38 10.92 10.06	0.36 0.36 0.34 0.29	0.18 0.18 0.17 0.14	0 · 10 0 · 10 0 · 10 0 · 10

TABLE 9.9

CONFIGURATION S-5 WITH 4 IN. CHINE WINGS LCG = 12.5 IN.

RUN	SPEED FPS	TKANSØM FLAP ANGLE DEG	MEAN PITCH DEG	MEAN DRAG LB	KMS BØW ACCEL G	KMS CG ACCEL G	RMS STERN ACCEL G
75 76 77 78 79	7.32 7.32 7.32 14.64 14.69	0.0 5.0 10.0 0.0 5.0	18.31 15.34 10.58 9.63 6.85	11.68 10.84 10.69 6.96 6.90	0.32 0.25 0.19 0.84 0.70	0·16 0·12 0·09 0·41 0·36	0.10 0.09 0.08 0.30 0.25
	COI	NF I GURAT I ON		TH 45 DEG 12.5 IN.	REE CHINE	FLAPS	
81 82 83 84 85	7·34 7·34 14·64 14·64	2.5 5.0 0.0 2.5 5.0	11.50 9.60 8.80 7.52 6.42	10.74 10.89 7.35 7.37 7.96	0.21 0.20 0.68 0.62 0.57	0.11 0.10 0.35 0.33 0.30	0.09 0.09 0.26 0.24 0.22

TABLE 10

SEAKEEPING STATISTICS FOR CONFIGURATION P-1 SIGNIFICANT HEIGHT = 2.2 FT DISPLACEMENT = 55,000 LB

WITHOUT CHINE FLAPS LCG = 12.5 FT

	WITHOUT	CHINE FLAPS	LCG =	12.5 FT		
KUN NO 200	VEL 0	JITY 15•0 KM	1015 FL	AP DEFLE		0.0 DEG
	NUMISE	ER OF WAVE E	NCOUNTER	5 30		
	MEAN	KMS OSC	AVE	KAGE	1/3 1	HIGHEST
PITCH, DEG	16.17	1.29 37	17.49	14.81	18.64	13.67
HEAVE, FT	0.05	0.33 24	0.49	-0.36	9.76	-0.70
BOW ACCEL, G						
CG ACCEL, G	-0.01	0.09 43	0.10	-0.14	0.16	-0.21
STERN ACCEL, G	-0.07	0.05 29	0.01	-0.15	0.06	-0.18
RUN NØ 174	VELO	TITY 15.0 KN	IOTS FI	AP 10+31+	TETFON 1	5•0 226
11011 110 110	• = = = = = = = = = = = = = = = = = = =	02.1. 10·0 ···		52. 22		
	NUMR	ER OF WAVE E	CNCOUNTER	S 30		
	MEAN	RMS 050	AVE	KAGE	1/3 /	HIGHEST
PITCH, DEG	9.53	KMS 050 1.54 35	10.83	8.20	12.34	6.91
HEAVE, FT						
BOW ACCEL, G	U • 08	0.13 51	0.26	-0.0೮	0.36	-0.18
UG ACCEL, G						
STERN ACCEL. G		0.04 24				
RUN NO 320		CITY 20.0 KN Ek of Wave e			:- XC1F03	2•5 DEG
	NUMB	EN OF WAVE E	INCOONTEN	.5 75		
	MEAN	KMS USC	AVE	RAGE	1/3	HIGHEST
PITCH, DEG	13.13	2.15 29	20.62	15.43	21.98	13.64
HEAVE, FT	2.35	0.45 25	2.91	1.82	3.21	1 • 49
BOW ACCEL, G		0 • 36 33	0.55	-0.47	0.39	-0.66
CG ACCEL. G	-0.07	0·17 28	0.23	-0.33	0 . 35	-0.42
STERN ACCEL. G	-0.07	0 • 11 11	0.21	-0.25	0.30	-0.31
RUN NØ 202	VELU	CIIA 80.0 K	NOTS FL	AP DEFLE	-U11UN	0.U DEG
	กดพก	ER OF LAVE I	ENCOUNTER	s 30		
	MEAN	KMS OSC	AVF	KAGE	1/3	HIGHESI
rITCH, DEG	16.69	2.02 29			20.47	
HEAVE, FT	2.30	0.45 26		1.6%		1.50
BOW ACCEL, G	0.00	0 • 34 47	0.42			
CG ACCEL. G	0.02	0.16 43		·· 0 • 1 5		
STERN ACCEL, G	-0.07	J. 07 30	0.05			
		-				

TABLE 10.2

WITHOUT	CHINE	FLAPS	LCG =	12.5	FT
---------	-------	-------	-------	------	----

KUN NØ 321	VELØ	CITY 20.0 KM	1015 FL	AP DEFLE	CTION	0.0 DEG
	NUMB	ER OF WAVE E	NCOUNTER	KS 45		
	MEAN	KMS ØSC	AVE	RAGE	173	HIGHEST
PITCH, DEG		2.04 33		14.59		12.88
		0.43 25	2.76			1 • 44
BOW ACCEL, G	-0.06	0.37 39	0.56			
CG ACCEL, G	-0.05	0.18 29	0.24	-0.31	0.36	-0.41
STERN ACCEL, G	-0.06	0.11 14	0.19	-0.88	0.26	-0.28
KUN NØ 314	VEL®	CITY 20.0 KM	NOTS FL	AP DEFLE	CTION	2.5 DEG
	NUMB	ER OF WAVE E	ENCOUNTER	KS 42		
	MEAN	RMS ØSC	AVE	IKAGE	173	HIGHESI
PITCH, DEG	16•0৪			13.63		12.08
		0.41 25		1 - 71		
BOW ACCEL, G	-0.05	0.36 41	0.52	-0.47	0.77	-0.66
CG ACCEL, G	-0.03	0.17 31	0.25	-0.30	0.35	-0.38
STERN ACCEL, G	-0.04	0.12 15	0 • 22	-0.82	0.32	-0.26
RUN NØ 313	USA 0	CITY 20.0 K	MATS FI	AP OFFI	CCTION	5.0 086
11011 110 010	V.L.	70111 2000 W	1010	.m. DC: CC	2011011	3-0 520
	NUMB	ER OF WAVE	ENCOUNTER	RS 132		
	MEAN	KMS USU	AVE	ERAGE	173	HIGHEST
PITCH, DEG		2.10 97		12.34		10.63
HEAVE, FT	5.08	0.42 75	2.62	1.57	2.97	1.29
BOW ACCEL, G	-0.04	0.36 124	0.53			-0.69
CG ACCEL, G	-0.01	0.17 92	0.27	-0.29		-0.39
STERN ACCEL, G	-0.04	0.12 52	0.20	-0.25	し・23	-0.30
KUN NO 316	VELE	OCITY 20.0 K	แกรง คือ	Ar DEFI	CTION	7.5 DEG
NON 119 510	V C L C	70111 2010 M	1010		20110.4	7.5 000
	MUME	BER OF MAVE	ENCOUNTE	vs 133		
	MEAN	KMS USC	AVE	EKAGE	1/3	HIGHESI
PITCH, DEG	14.00	1.96 97		11.50	17.51	9.95
HEAVE, FT	1.99		2.50		2.00	1.20
LOW ACCEL, G						
THE MODELS	-0.03	0.35 129	0.51	-0.44	U• 5 1	-0.63
CG ACCEL, G	-0.03	0•35 129 0•17 ช9		-0.31		

R-1880

TABLE 10.3

WITHOUT CHINE FLAPS LCG = 12.5 FT

KUN NØ 317	VELU	CITY 20.0 KN	015 FL	AP DEFLE	CTION 10	.O DEG
	ИПWR	EK OF WAVE	NCOUNTER	\$ 126		
	MEAN	RMS 050	AVE	KAGE	1/3 H	IGHESI
PITCH, DEG	13.14	1.86 98	15.29	10.73	16.46	9.29
HEAVE, FT	1.97	0.38 7 8				
BOW ACCEL, G	-0.03	0.33 128	U• 48	-0.43	0.76	-0.63
CG ACCEL. G						
STERN ACCEL, G	-0.03	0.12 59	0.20	-0.24	0.27	-0.30
	0.00	0,12	0.20	0 - 12 -		
RUN NO 318	VELO	CITY 20.0 KN	IUTS FL	AP DEFLE	CTION 12	:•5 DEG
	NUME	ER OF WAVE E	NCOUNTER	S 85		
	MEAN	KMS 050	AVA	'RAGE'	1/3 ⊨	II GHE ST
PITCH, DEG	11.16	1.54 70	12.85	9.40	14.05	ধ•17
			2.04			
BOW ACCEL, G			0.36			
		0.14 49				
STERN ACCEL, G			0.19			
kUN NO 163		CITY 20.0 KN			ECTION 15	o•0 DF0
			AVE			
PITCH, DEG			9.94			
HEAVE, FT			1.21			
BOW ACCEL. G			0.31			
UG ACCEL. G			0.10			
STEEN ACCEL, G	-0.44	0 - 14 41	-0.33	-0.57	-0.25	- 0 • 70
NUN NO 173	VELC	CITY 20.0 K	IJTS FL	AP DEFLE	CTION 1:	o•∪ :DEG
	សូ ប ។E	BER OF MAVE E	INCOUNTE.	15 30		
	MEAN	KMS 050		ERAGE	1/3 H	
PITCH, DEG	9.65	1.32 34	10.96	8.37	12.2	7.63
HEAVE, FT	1.27	0.30 24	1 • 6 1	0.7 3	1 • ೮៦	0.77
BOW ACCEL, G	0.07	0.23 51	0.36	-0.19	0.58	-0.36
CG ACCEL. G	0.00	0 11 60	0.17	-0.1.3	0.25	
	0.03	$0 \cdot 11 - 40$	0 • 1 0	-0.1.3	0.23	- O • ∃12
STERN ACCEL, G	-0.02	0.06 33	0• 15 0• 05		0.13	

TABLE 10.4

WITHOUT	CHINE	FLAPS	LCG =	12.5	FT

			•			
KUN NØ 204	VELO	CITY 25.0 K	NOTS FL	AP DEFLE	ECTION	O.O DEG
	NUNU	ER OF WAVE	ENCOUNTER	:5 30		
	MEAN	кмз 050 3•15 25	AVE	KAGE	1/3	HIGHEST
PITCH, DEG	12.69	3.15 25	16• 3৪	8.90	13.13	6 • 89
HEAVE, FT BOW ACCEL, G	3.33	0.60 21	4.09	2.61	4.46	2.53
BOW ACCEL, G	0.03	0.52 41	0.84	-0.39	1.24	-0•7ಚ
CG ACCEL, G STERN ACCEL, G	0.05	0.25 41	0.35	-0.22	0.52	-0.42
STERN ACCEL, G	-0.03	0.13 34	0 • 11	-0.51	0.24	-0.30
RUN NO 167	VELØ	CITY 25.0 K	NUTS FL	AP DEFLE	ECTION 1	0.0 DEG
	NUMB	ER OF WAVE	ENCOUNTER	S 30		
	MEAN	KMS OSC	AVE	RAGE	1/3	HIGHEST
PITCH, DEG	8.60	KMS 05C 1.94 31	10.64	6.65	12.00	5.32
HEAVE, FT	2.72	0.40 23	3.21	2.20	3 - 43	1.99
HEAVE, FT BOW ACCEL, G	0.06	0.41 52	3•21 0•58	-0.31	0.93	-0.59
CG ACCEL. G	0.06	0.20 43	0.31	-0.19	0.44	-0.33
STERN ACCEL, G	0.01	0.11 34	0.16			
m						
RUN NO 165	VELO	CITY 25.0 K	NUTS FL	AP DEFLE	ECTION 1	2.5 DEG
	NUMR	ER OF WAVE	ENCOUNTER	(S 30		
	A + 17 A A I		A 1115			
DITOU OF	MEAN	KMS 050	AVE	.RAGE	173	HI GHE SI
	7 • 62	1.72 30	9 50	5.90	10.57	4 • 43
HEAVE, F1	2.54	0.39 23	2.96	2.15	3.24	1.85
BOW ACCEL. G	(- 05		2 . 00	0 1 1		
CG ACCEL G	0.07	0.19 44	0 - 30	-0.14	U • 42	0 • 30
STERN ACCEL, G	-0.20	0•11 3 ♂	-0.07	-0.35	0 • C I	-0•42
RUN NO 310	AELO	CITY 30.0 K	NOIS FL	AP DEFLE	- 201107	2.5 DEG
	NUMU	ER OF VAVE	ENCOUNTER	(5 34		
	MEAN	RMS USC		KAGE	1/3	al Gnest
PITCH, DEG	10.34	6.31 19	18.23	0.53	20.55	-1.15
HEAVE, FT	3.67	1 • 30 19		1.96		1 • 59
13W ACCEL: G	-0.05	0.94 25		-1.15		-1.92
CG AUCEL G	0.01	0.31 23		-0.77	9.22	-1.37
STERN ACCEL, G	-0.02	0 48 32	0.47	-0.35	0.33	-1.11

R-1880

TABLE 10.5

WITHOUT CHINE FLAPS LCG = 12	2.5 F	٠,
------------------------------	-------	----

RUN NO 305	VELO	CITY 30.0 K	UTS FLAP	DEFLECTION	0.0 DEG
	N UM บ	ER OF WAVE e	NCOUNTERS 1	10	
	MEAN	KMS USC	AVERAGI	£ 1/3	HIUnesi
PITCH, DEG	10.09	4.42 65	15.06 4	10 17.79	1.60
HEAVE, FT	3.63	0.90 57	4.78 2	6.50	2.10
BOW ACCEL, G	-0.04	0.75 96	1.19 -0	74 2.03	-1.23
CG ACCEL, G	-0.01	0.40 90	0.54 -0		-0.63
STERN ACCEL, G	0.00	0.33 39	0.40 -0	•53 0.67	-0.79
14101 No. 20 4	V151 (ATTH OA A A	LTC CLAN	APTS PART	11 E 1116
KUN NU 304	V E L 0	CITA 30.0 ()	UIS FLAP	JEF LECTION	2.5 DEG
	ипив	ER OF WAVE E	NCOUNTERS 1	Jö	
	MEAN	KMS 050	AVERAG	1/3	HIGHEST
PITCH, DEG	5.59	3.59 67	12.55 3	14.93	1.06
UEAGE ET	3.34	0.74 59		52 4.74	
BOW ACCEL, G	-0.02	0.68 113	1.12 -0	.58 1.07	-1.03
UG ACCEL, G	0.02	0.34 33	0.55 -0	40 0.01	-0.65
STERN ACCEL, G	-0.01	0.29 79		47 0.62	
kUN NØ 303	VELO	CITY 30.0 KM	DIS FLAP	DEFLECTION	5.0 DEG
	ишмв	ER UF WAVE E	ENCOUNTERS 1	79	
					el GeEST
ritch. DEG	MEAN	RMS ØSC	AVERAG.	E 1/3	H1 UHES1
PITCH: DEG HEAVE: FT	MEAN 7•95	RMS 050 3•12 72	AVERAG	£ 1/3 •∪6 13•60	1.47
HEAVE, FT	MEAN 7•95 3•18	RMS ØSU 3•12 72 0•65 57	AVERAG 11•29 4 3•98 2	E 1/3 • 06 13 • 60 • 45 4 • 07	1.47 2.00
HEAVE, FT	MEAN 7.95 3.18 -0.02	RMS 050 3.12 72 0.65 57 0.64 122	AVERAG 11.29 4 3.98 2 1.02 -0	E 1/3 • 06 13 • 60 • 45 4 • 57 • 57 1 • 72	1 • 47 2 • 00 - 6 • 93
HEAVE, FT	MEAN 7•95 3•18	RMS 050 3.12 72 0.65 57 0.64 122	AVERAG 11.29 4 3.98 2 1.02 -0 0.51 -0	E 1/3 • 06 13 • 60 • 45 4 • 07	1.47 2.00 -0.98 -0.60
HEAVE, FT BOW ACCEL, C CG ACCEL, G	MEAN 7.95 3.18 -0.02 0.03	RMS 050 3.12 72 0.65 57 0.64 122 0.32 96	AVERAG 11.29 4 3.98 2 1.02 -0 0.51 -0	1/3 • 06 • 45 • 45 • 57 • 1• 72 • 36 • 0• 77	1.47 2.00 -6.98 -0.60
HEAVE, FT BOW ACCEL, C CG ACCEL, G	MEAN 7.95 3.15 -0.02 0.03 0.00	RMS 050 3.12 72 0.65 57 0.64 122 0.32 96	AVERAG. 11.29 4 3.98 2 1.02 -0 0.51 -0 0.35 -0	E 1/3 • 06 13 • 60 • 45 4 • 57 • 57 1 • 72 • 36 0 • 77 • 42 0 • 55	1.47 2.00 -0.98 -0.60 -J.64
HEAVE, FT BOW ACCEL, C CG ACCEL, G STERN ACCEL, G	MEAN 7.95 3.18 -0.02 0.03 0.00	RMS 05U 3.12 7E 0.65 57 0.64 122 0.32 96 0.26 75	AVERAG. 11.29 4 3.98 2 1.02 -0 0.51 -0 0.35 -0	E 1/3 • 06 13 • 60 • 45 4 • 07 • 57 1 • 72 • 36 0 • 77 • 42 0 • 55 DEFLECTION	1.47 2.00 -0.98 -0.60 -J.64
HEAVE, FT BOW ACCEL, C CG ACCEL, G STERN ACCEL, G	MEAN 7.95 3.18 -0.02 0.03 0.00	RMS 050 3.12 72 0.65 57 0.64 122 0.32 96 0.26 75	AVERAG. 11.29 4 3.98 2 1.02 -0 0.51 -0 0.35 -0	E 1/3 • 06 13 • 60 • 45 4 • 07 • 57 1 • 72 • 36 0 • 77 • 42 0 • 55 DEFLECTION	1.47 2.00 -0.98 -0.60 -J.64
HEAVE, FT BOW ACCEL, C CG ACCEL, G STERN ACCEL, G	MEAN 7.95 3.18 -0.02 0.03 0.00 VELO	KMS 0SU 3.12 72 0.65 57 0.64 122 0.32 96 0.26 75 CITY 30.0 KM	AVERAG. 11.29 4 3.98 2 1.02 -0 0.51 -0 0.35 -0 DOTS FLAP	E 1/3 .06 13.60 .45 4.0/ .57 1.72 .36 0.77 .42 0.55 DEFLECTION .05	1.47 2.00 -0.98 -0.60 -J.64 7.5 DEG
HEAVE, FT BOW ACCEL, C CG ACCEL, G STERN ACCEL, G KUN NO 302 PITCH, DEG HEAVE, FT	MEAN 7.95 3.18 -0.02 0.03 0.00 VELO NUMB	RMS 0SU 3.12 72 0.65 57 0.64 122 0.32 96 0.26 75 CITY 30.0 KM	AVERAG. 11.29 4 3.98 2 1.02 -0 0.51 -0 0.35 -0 DOTS FLAP ENCOUNTERS 1 AVERAG	E 1/3 • 06 13 • 60 • 45 4 • 07 • 57 1 • 72 • 36 0 • 77 • 42 0 • 55 DEFLECTION U5 E 1/3 • 01 11 • 14	1.47 2.00 -0.98 -0.60 -J.64 7.5 DEG
HEAVE, FT BOW ACCEL, C CG ACCEL, G STERN ACCEL, G KUN NO 302 PITCH, DEG HEAVE, FT BOW ACCEL, G	MEAN 7.95 3.18 -0.02 0.03 0.00 VELO NUMB MEAN 6.78 2.97 -0.01	RMS 0SC 3.12 72 0.65 57 0.64 122 0.32 96 0.26 75 CITY 30.0 KM	AVERAG. 11.29 4 3.98 2 1.02 -0 0.51 -0 0.35 -0 1015 FLAP INCOUNTERS 1 AVERAG 9.16 4	E 1/3 • 06 13 • 60 • 45 4 • 07 • 57 1 • 72 • 36 0 • 77 • 42 0 • 55 DEFLECTION U5 E 1/3 • 01 11 • 14 • 35 4 • 10	1.47 2.00 -0.98 -0.60 -J.64 7.5 DEG
HEAVE, FT BOW ACCEL, C CG ACCEL, G STERN ACCEL, G KUN NO 302 PITCH, DEG HEAVE, FT	MEAN 7.95 3.18 -0.02 0.03 0.00 VELO NUMB MEAN 6.78 2.97	RMS 050 3.12 72 0.65 57 0.64 122 0.32 96 0.26 75 CITY 30.0 KM EK OF WAVE 1 RMS 050 2.43 82 0.51 55	AVERAG. 11.29 4 3.98 2 1.02 -0 0.51 -0 0.35 -0 1015 FLAP ENCOUNTERS 1 AVERAG. 9.16 4 3.64 2	E 1/3 • 06 13 • 60 • 45 4 • 07 • 57 1 • 72 • 36 0 • 77 • 42 0 • 55 DEFLECTION 05 E 1/3 • 01 11 • 14 • 35 4 • 10 • 56 1 • 54 • 35 0 • 63	1.47 2.00 -0.93 -0.60 -J.64 7.5 DEG HIGHLST 1.79 2.01 -0.90 -0.59

TABLE 10.6

WITHOUT	CHINE	FLAPS	LCG ≖	12.5 FT
---------	-------	-------	-------	---------

KUN NO 169	VELO	CITY 30.0 KN	OTS FLAP DE	FLECTION 7.5 DEG
	NUMB	ER OF WAVE E	NCOUNTERS 30	ı.
	MEAN	KMS ØSC	AVERAGE	1/3 HIGHEST
PITCH, DEG	6.61	2.43 26	9.19 3.7	5 10.60 1.63
HEAVE, FT	3.07	0.52 21	3.72 2.5	
BOW ACCEL, G	0.28	0.58 50	1.06 -0.1	
CG ACCEL, G				
STERN ACCEL, G	-0.06	0.16 36	0.09 -0.2	26 0.23 -0.40
KUN NØ 168	VF1.0	CITY 30.0 KN	OTS FLAP DE	FLECTION 10.0 DEG
				200110 10 0 000
	NUMB	ER UF WAVE E	NCOUNTERS 30	
	MEAN	KMS OSC	AVERAGE	1/3 HIGHEST
PITCH, DEG	5.78	1.97 28	7.77 3.1	
HEAVE, FT	2.86	0.44 20	3.41 2.	
BOW ACCEL. G	0.11	0.52 53	0.78 -0.8	
CG ACCEL, G	0.05	0.26 44	0.34 -0.2	
STERN ACCEL, G	0.00	0.13 35	0.16 -0.1	
NUN NØ 329			OTS FLAP DE	FLECTION 10.0 DEG
KUN NØ 329	NUMB	EN OF WAVE E	NCOUNTERS 32	4
	NUMB MEAN	EN OF WAVE E	NCOUNTERS 34	1/3 HlGAES[
PITCH, DEG	NUMB MEAN 4•46	EN OF WAVE E MMS OSC 2.40 26	NCOUNTERS 34 AVERAGE 7.05 1.8	1/3 HIGHESF 27 8•60 -0•97
PITCH, DEG HEAVE, FT	NUMB MEAN 4•46 3•02	EN OF WAVE E MMS OSC 2.40 26 0.52 21	AVERAGE 7.05 1.8 3.68 2.4	1/3 HIGHESF 27 8•60 -0•97 49 4•22 2•11
PITCH, DEG HEAVE, FT BOW ACCEL, G	NUMB MEAN 4.46 3.02 -0.01	MS 050 2.40 26 0.52 21 0.53 41	AVERAGE 7.05 1.8 3.65 2.4 0.95 -0.5	1/3 HIGHESF 27 8.60 -0.97 49 4.22 2.11 63 1.56 -0.92
PITCH, DEG HEAVE, FT BØW ACCEL, G CG ACCEL, G	NUMB MEAN 4.46 3.02 -0.01 0.02	MS 050 2.40 26 0.52 21 0.53 41 0.28 30	AVERAGE 7.05 1.8 3.68 2.4 0.95 -0.5 0.41 -0.3	1/3 HIGHESF 27 8.60 -0.97 49 4.22 2.11 63 1.56 -0.92 65 0.01 -0.59
PITCH, DEG HEAVE, FT BOW ACCEL, G	NUMB MEAN 4.46 3.02 -0.01 0.02 0.00	RMS 050 2.40 26 0.52 21 0.55 41 0.28 30 0.23 25	AVERAGE 7.05 1.8 3.63 2.4 0.95 -0.5 0.41 -0.3	1/3 HIGHESF 27 8.60 -0.97 49 4.22 2.11 63 1.56 -0.92 65 0.01 -0.59 87 0.45 -0.52
PITCH, DEG HEAVE, FT BØW ACCEL, G CG ACCEL, G	NUMB MEAN 4.46 3.02 -0.01 0.02 0.00	RMS 050 2.40 26 0.52 21 0.55 41 0.28 30 0.23 25	AVERAGE 7.05 1.8 3.63 2.4 0.95 -0.5 0.41 -0.3	1/3 HIGHESF 27 8.60 -0.97 49 4.22 2.11 63 1.56 -0.92 65 0.01 -0.59
PITCH, DEG HEAVE, FT BOW ACCEL, G CG ACCEL, G STERN ACCEL, G	NUMB MEAN 4.46 3.02 -0.01 0.02 0.00 VELO	MS 050 2.40 26 0.52 21 0.53 41 0.28 30 0.23 25	AVERAGE 7.05 1.8 3.63 2.4 0.95 -0.5 0.41 -0.3	1/3 HIGHESF 27 8.60 -0.97 49 4.22 2.11 53 1.56 -0.92 55 0.61 -0.59 37 0.45 -0.52 CFLECTION 12.5 DEG
PITCH, DEG HEAVE, FT BOW ACCEL, G CG ACCEL, G STERN ACCEL, G	NUMB MEAN 4.46 3.02 -0.01 0.02 0.00 VELO	EN OF WAVE E RMS OSC 2.40 26 0.52 21 0.58 41 0.28 30 0.23 25 CITY 30.0 KN	AVERAGE 7.05 1.8 3.68 2.4 0.95 -0.5 0.41 -0.5 0.30 -0.5 OTS FLAP DE	1/3 HIGHESF 27 8.60 -0.97 49 4.22 2.11 3 1.56 -0.92 35 0.61 -0.59 37 0.45 -0.52 CFLECTION 12.5 DEG
PITCH, DEG HEAVE, FT BØV ACCEL, G CG ACCEL, G STERN ACCEL, G	NUMB MEAN 4.46 3.02 -0.01 0.02 0.00 VELO NUMB	EN OF WAVE E KMS OSC 2.40 26 0.52 21 0.58 41 0.28 30 0.23 25 CITY 30.0 KN SER OF WAVE E	AVERAGE 7.05 1.8 3.68 2.4 0.95 -0.5 0.41 -0.5 0.30 -0.5 OTS FLAP DE	1/3 HIGHESF 27 8.60 -0.97 49 4.22 2.11 3 1.56 -0.92 35 0.61 -0.59 37 0.45 -0.52 CFLECTION 12.5 DEG 3
PITCH, DEG HEAVE, FT BOV ACCEL, G CG ACCEL, G STERN ACCEL, G KUN NO 330 PITCH, DEG	NUMB MEAN 4.46 3.02 -0.01 0.02 0.00 VELO NUMB MEAN 4.72	EN OF WAVE E RMS OSC 2.40 26 0.52 21 0.53 41 0.28 30 0.23 25 CCITY 30.0 KN SER OF WAVE E RMS OSC 1.72 30	AVERAGE 7.05 1.8 3.63 2.4 0.95 -0.5 0.41 -0.5 0.30 -0.5 OTS FLAP DE NCOUNTERS 33 AVERAGE 6.54 2.6	1/3 HIGHESF 27 8.60 -0.97 49 4.22 2.11 3 1.56 -0.92 35 0.01 -0.59 37 0.45 -0.52 CFLECTION 12.5 DEG 3 1/3 HIGHEST 54 7.72 0.95
PITCH, DEG HEAVE, FT BOV ACCEL, G CG ACCEL, G STERN ACCEL, G KUN NO 330 PITCH, DEG HEAVE, FT	NUMB MEAN 4.46 3.02 -0.01 0.02 0.00 VELO NUMB MEAN 4.72 2.52	EN OF WAVE E KMS OSC 2.40 26 0.52 21 0.53 41 0.28 30 0.23 25 CCITY 30.0 KN ER OF WAVE E KMS OSC 1.72 30 0.38 20	AVERAGE 7.05 1.8 3.63 2.4 0.95 -0.5 0.41 -0.5 0.30 -0.5 OTS FLAP DE NCOUNTERS 33 AVERAGE 6.54 2.6 3.02 2.5	1/3 HIGHESF 27 8.60 -0.97 49 4.22 2.11 3 1.56 -0.92 35 0.61 -0.59 37 0.45 -0.52 CFLECTION 12.5 DEG 3 1/3 HIGHEST 64 7.72 0.95 32 3.33 1.79
PITCH, DEG HEAVE, FT BOW ACCEL, G CG ACCEL, G STERN ACCEL, G KUN NO 330 PITCH, DEG HEAVE, FT BOW ACCEL, G	NUMB MEAN 4.46 3.02 -0.01 0.02 0.00 VELO NUMB MEAN 4.72 2.52 -0.01	EN OF WAVE E NMS OSC 2.40 26 0.52 21 0.53 41 0.28 30 0.23 25 CITY 30.0 KN ER OF WAVE E NMS OSC 1.72 30 0.38 20 0.47 33	AVERAGE 7.05 1.8 3.65 2.4 0.95 -0.5 0.41 -0.5 0.30 -0.5 OTS FLAP DE NCOUNTERS 33 AVERAGE 6.54 2.6 3.02 2.5 0.65 -0.5	1/3 HIGHESF 27 8.60 -0.97 49 4.22 2.11 33 1.56 -0.92 35 0.61 -0.59 37 0.45 -0.52 EFLECTION 12.5 DEG 3 1/3 HIGHEST 34 7.72 0.95 32 3.33 1.79 33 1.17 -0.80
PITCH, DEG HEAVE, FT BOV ACCEL, G CG ACCEL, G STERN ACCEL, G KUN NO 330 PITCH, DEG HEAVE, FT	NUMB MEAN 4.46 3.02 -0.01 0.02 0.00 VELO NUMB MEAN 4.72 2.52	EN OF WAVE E KMS OSC 2.40 26 0.52 21 0.53 41 0.28 30 0.23 25 CCITY 30.0 KN ER OF WAVE E KMS OSC 1.72 30 0.38 20	AVERAGE 7.05 1.8 3.63 2.4 0.95 -0.5 0.41 -0.5 0.30 -0.5 OTS FLAP DE NCOUNTERS 33 AVERAGE 6.54 2.6 3.02 2.5	1/3 HIGHESF 27 8.60 -0.97 49 4.22 2.11 3 1.56 -0.92 35 0.61 -0.59 37 0.45 -0.52 36 1/3 HIGHESF 36 7.72 0.95 37 33 1.79 38 1.17 -0.80 39 0.55 -0.39

TABLE 10.7

	WITHOUT	CHINE FLAPS	LCG = 12.5 FT	
RUN NØ 170	VELØ	CITY 30.0 KM	IØTS FLAP DEFLI	ECTION 12.5 DEG
	NUMBE	ER OF WAVE B	ENCOUNTERS 30	
	MEAN	KMS ØSC	AVERAGE	1/3 HIGHEST
PITCH, DEG	4.84	1.59 30	6 • 48 3 • 36	7.50 1.72
HEAVE, FT BØW ACCEL, G CG ACCEL, G	2.64	0•37 17	3.11 2.20	3•39 1•92
STERN ACCEL, G	-0.03	0.12 36	0.10 -0.21	0.20 -0.30
RUN NØ 210	VELO	CITY 35.0 K	NOTS FLAF DEFL	ECTION 5.0 DEG
	NUMBI	ER OF WAVE	ENCOUNTERS 30	
	MEAN	RMS ØSC	AVEKAGE	1/3 HIGHEST
PITCH, DEG	6 • 14	3.00 21	AVERAGE 9.45 2.25	11.85 -0.06
HEAVE, FT	3 • 38	0.70 18	4.25 2.62	4.67 2.07
BOW ACCEL. G	0.05	0.74 45	1.09 -0.46	1.03 -1.06
CG ACCEL, G	0.05	0.39 49	0 42 -0 25	0.75 -0.71
STERN ACCEL, G	-0.01	0.22 40	9.45 2.23 4.25 2.62 1.09 -0.45 0.42 -0.25 0.13 -0.29	0.35 -0.51
KUN NO 172			NOIS FLAP DEFL ENCOUNTERS 30	ECTION 7.5 JEG
	MEAN	RMS 'SC	AVEKAĞE 7•35 2•35 3•83 2•67	1/3 HIGHEST
PITCH, DEG	5 • 46	2.56 23	7.35 2.38	10.02 0.19
HEAVE, FT HOW ACCEL, G UG ACCEL, G	3.22	0.57 20	3.83 2.67	4.33 2.15
EG ACCEL + G	(1.09	0.34 50	0.46 -0.17	U.7: -U.50
STERN ACCEL: 6	-0.01	0.19 31	0.10 -0.20	0.33 -0.45
31,				
NUN NO 171	ソビレジ	CITY 35.0 K	NOTS FLAP DEFL	FCIION 15.2 DEG
	NUMB	ER OF WAVE	ENCOUNTERS 30	
	MEAN	K45 J.C	AVERAGE	1/3 HIGHEST
PITCH, DEG	3.10	1.37 31		
HEAVE, FT		0.32 17	3.01 2.26	
BUN ACCEL. C				
CG ACCEL. G	0.15	0.82 40	0.40 -0.13	0.5/ -0.31
STERN ACCEL, G		0.13 34	0.15 -0.15	0.20 -0.29

TABLE 10.8

WITHOUT	CHINE	FLAPS	LCG =	10.5	FT
WILLIOUS	Q111				

'	WITHOUT OIL						
		4 DO 0 4	MATS	FLAP	DEFLECT	II(N -2.5	DEG
KUN NO 343	VELOCI	1 50.0 V					
	A 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	OF WAVE	ENCO	UNTERS	42		
	NOMBER	OF WAYE				1/3 HIG	UEST
	MEAN	RMS OSC		AVERA	GE		5.16
		2.43 27					1.88
PIICH,		0.50 25		J . J .			U.76
MEHVE		0.43 35		O	0.0	0.30	0.41
7.) W MOOFE		0.16 25		0.4.	0 + 0	0.22 -0).32
CG ACOLL?	O - O -	.09 11	O	. 15	1.21	0.22	
STERN ACCEL, G -							
					P DEFLEC	TION ON	UDEG
KUN NO 342	VELOCI	LA 50.0	KNUI	2 1.511	, , , , , ,		
KON 143 3 1-		2 1 01.5	· water	MINTERS	44		
	NOWRER	OF WAVE	- EIVC	,0011			
		KMS OS		HVEN	AGE	1/3 H1	GHEST
	MEAN	2.42 25		22.67	17.07		14.73
PITON	20.12	0.48 2		3.44	2.29	0-7-	-0.78
HEAVE	2.36	0.42 3		0.61	-0.54	•	-0.44
BUK HOODE	-0.07	0.16 2	_	0.13	-0.34	- -	-0.31
CG ACCEC,	-0.09	0.09		0.17	-0.26	0.24	0.0.
STERN ACCEL, G	-0.06	0.00					
					ALVERT COLUMN	2 2000	.5 DEG
0.63	VELOC	11Y 20.0	KNO	12 FF	AP DEFLE	C110N 2	
KUN NO 341							
	NUMBE	ER OF WAL	IE EN	COONTEN	5		
		(2.5)	. C	AVE	RAGE	1/3 H	I GHEST
	MEAN	KMS 03		21.73	15.94	23.34	13.59
PITCH, DEG	19.12		29 24	3.45	2.22	3.75	1.91
HEAVE, FI	2.82	0	33	0.64	-0.52	1.00	-0.75 -0.44
BOW ACCEL, G	-0.06		27	0.19	-0.34	0.30	-0.30
CG ACCEL, G	-0.08	0	10	U. 18	-0.24	0.25	-0.30
STERN ACCEL, G	-0.05	00	• -				
						.EC110N	5.0 326
- 20	VEL.	CITY 20.	U KN	015 F	LAP DEFL	ECTION	
KUN NO 339					RS 40		
	NUM	BER OF RA	AVE E	NCOUNTE	K2 40		
					EKAGE	1/3	HIGHESI
	MEAN	KMS !		21.06	14.78	22.70	12.71
PITCH, DEG	1४•2४	2.61	29	3.29	2.09	3.67	1.81
HEAVE, FT	2.67	0 • 48	25	0.71	-0.54	1.16	-0.78
BOW ACCEL, G	-0.05	0.43	35	0.24	-0.31	0.35	-0.40
CG ACCEL, G	-0.04	0.17	26	U•10	-0.25		~v•31
STERN ACCEL. G	-0.05	0.10	11	00			

TABLE 10.9

WITHOUT CHINE FLAN	'S LCG	= 10.	5 FT
--------------------	--------	-------	------

KUN NØ 340	VELU	CITY 50.0 KV	OTS FL	AP DEFLE	CTION	7.5 DEG
	NUMB	ER OF WAVE E	EN COUNT EN	KS 45		
			AVE			
PITCH, DEG			19.95			11.16
HEAVE, FT			3•25 0•70		3•72 1•13	
BOW ACCEL, G			0.23			-0.41
STERN ACCEL, G			0.23			-0.32
STERN ACCEL, G		0.11 12	0.20	0.20	0.20	0.52
RUN NO 344	VEL 0	CITY 20.0 KN	IOTS FL	AP DEFLE	ECTION 10	0.0 DEG
	,					
	NUMB	ER OF WAVE E	ENCOUNTER	(S 126		
	MEAN	KMS USC	AVE	CRAGE	1/3	HIGHES1
PITCH, DEG	16.12	2.63 95	19.00	12.71	20.56	10.67
HEAVE, FT	2.63	0.45 81	3.21	2.09	3.57	
BOW ACCEL. G	-0.04		0.77			
			0.25			-0.42
STERN ACCEL -	-0.04	0.12 50	0.21	-0.24	0.27	-0.30
KUN NO 345	VEL	OCITY 20.0 KM	NUIS FL	AP DEFLE	EUTION 18	2.5 JEG
KUN NO 345					ECTION 18	2•5 JEG
KUN NO 345		BER OF WAVE 1	ENCOUNTER	cs 129		
	NUME MEAN	BER OF WAVE E	EN COUNTER AVE	KS 129 EKAGE	1/3 }	HI GRESI
PITCH, DEG	NUME MEAN 15•23	KMS 05C 2.75 91	ENCOUNTER AVE 18•37	KS 129 EKAGE 11•59	1/3 20•10	HIGHESI 9•50
PITCH, DEG HEAVE, FT	NUME MEAN 15•23 2•65	KMS ØSC 2•75 91 0•46 78	ENCOUNTER AVE 18•37 3•25	KS 129 ERAGE 11.59 2.03	1/3 } 20•10 3•66	HIGHEST 9•50 1•82
PITCH, DEG HEAVE, FT BOW ACCEL, G	NUME MEAN 15.23 2.65 -0.03	RMS ØSC 2•75 91 0•46 73 0•48 121	ENCOUNTER AVE 18•37 3•25 0•79	KS 129 ERAGE 11.59 2.08 -0.55	1/3 } 20•10 3•66 1•23	HI GHEST 9.50 1.82 -0.75
PITCH, DEG HEAVE, FT BOW ACCEL, G CG ACCEL, G	NUME MEAN 15.23 2.65 -0.03 -0.02	RMS 050 2.75 91 0.46 73 0.48 121 0.19 92	AVE 18.37 3.25 0.79 0.28	RS 129 ERAGE 11.59 2.03 -0.55 -0.30	1/3 20.10 3.66 1.23 0.40	HIGHEST 9.50 1.82 -0.73 -0.41
PITCH, DEG HEAVE, FT BOW ACCEL, G	NUME MEAN 15.23 2.65 -0.03 -0.02	RMS ØSC 2•75 91 0•46 73 0•48 121	ENCOUNTER AVE 18•37 3•25 0•79	RS 129 ERAGE 11.59 2.03 -0.55 -0.30	1/3 } 20•10 3•66 1•23	HIGHEST 9.50 1.82 -0.73 -0.41
PITCH, DEG HEAVE, FT BOW ACCEL, G CG ACCEL, G STERN ACCEL, G	NUME MEAN 15.23 2.65 -0.03 -0.02 -0.04	RMS 05C 2.75 91 0.46 73 0.48 121 0.19 92 0.13 50	AVE 18.37 3.25 0.79 0.28 0.22	ERAGE 11.59 2.08 -0.55 -0.30 -0.25	1/3 } 20 • 10 3 • 6 6 1 • 2 3 0 • 40 0 • 30	HIGHEST 9.50 1.82 -0.75 -0.41 -0.31
PITCH, DEG HEAVE, FT BOW ACCEL, G CG ACCEL, G	NUME MEAN 15.23 2.65 -0.03 -0.02 -0.04	RMS 050 2.75 91 0.46 73 0.48 121 0.19 92	AVE 18.37 3.25 0.79 0.28 0.22	ERAGE 11.59 2.08 -0.55 -0.30 -0.25	1/3 } 20 • 10 3 • 6 6 1 • 2 3 0 • 40 0 • 30	HIGHEST 9.50 1.82 -0.75 -0.41 -0.31
PITCH, DEG HEAVE, FT BOW ACCEL, G CG ACCEL, G STERN ACCEL, G	NUME MEAN 15.23 2.65 -0.03 -0.02 -0.04	RMS 05C 2.75 91 0.46 73 0.48 121 0.19 92 0.13 50	AVE 18.37 3.25 0.79 0.28 0.22	KS 129 ERAGE 11.59 2.08 -0.55 -0.30 -0.25 LAP DEFE	1/3 } 20 • 10 3 • 6 6 1 • 2 3 0 • 40 0 • 30	HIGHEST 9.50 1.82 -0.75 -0.41 -0.31
PITCH, DEG HEAVE, FT BOW ACCEL, G CG ACCEL, G STERN ACCEL, G	NUME MEAN 15.23 2.65 -0.03 -0.02 -0.04 VELG	RMS 050 2.75 91 0.46 75 0.48 121 0.19 92 0.13 50	ENCOUNTER AVE 18.37 3.25 0.79 0.28 0.28 NOTS FE	KS 129 ERAGE 11.59 2.08 -0.55 -0.30 -0.25 LAP DEFE	1/3 } 20 • 10 3 • 66 1 • 23 0 • 40 0 • 30	HIGHEST 9.50 1.82 -0.75 -0.41 -0.31
PITCH, DEG HEAVE, FT BOW ACCEL, G CG ACCEL, G STERN ACCEL, G RUN NO 346	NUME MEAN 15.23 2.65 -0.03 -0.02 -0.04 VELO NUME MEAN 14.00	RMS 05C 2.75 91 0.46 73 0.48 121 0.19 92 0.13 50 0CITY 20.0 KM BER OF WAVE 1 RMS 05C 2.64 98	ENCOUNTER AVE 18.37 3.25 0.79 0.28 0.22 NOTS FE ENCOUNTER AVE 16.94	KS 129 ERAGE 11.59 2.08 -0.55 -0.30 -0.25 LAP DEFEN KS 125 ERAGE 10.73	1/3 } 20 • 10 3 • 66 1 • 23 0 • 40 0 • 30 20 FI ON 1	HIGHEST 9.50 1.82 -0.75 -0.41 -0.31 5.0 DEG
PITCH, DEG HEAVE, FT BOW ACCEL, G CG ACCEL, G STERN ACCEL, G RUN NO 346 PITCH, DEG HEAVE, FT	NUME MEAN 15.23 2.65 -0.03 -0.02 -0.04 VELE NUME MEAN 14.00 2.57	RMS ØSC 2.75 91 0.46 73 0.48 121 0.19 92 0.13 50 0CITY 20.0 KM BER OF WAVE 1 RMS ØSC 2.64 98 0.44 81	ENCOUNTER AVE 18.37 3.25 0.79 0.28 0.22 NOTS FE ENCOUNTER AVE 16.94 3.13	KS 129 ERAGE 11.59 2.08 -0.55 -0.30 -0.25 LAP DEFEN KS 125 ERAGE 10.73 2.03	1/3 } 20 • 10 3 • 66 1 • 23 0 • 40 0 • 30 20 FI ON 1 1/3 ; 15 • 73 3 • 51	HIGHEST 9.50 1.82 -0.75 -0.41 -0.31 5.0 JEG HIGHESI 8.65 1.77
PITCH, DEG HEAVE, FT BOW ACCEL, G CG ACCEL, G STERN ACCEL, G RUN NO 346 PITCH, DEG HEAVE, FT BOW ACCEL, G	NUME MEAN 15.23 2.65 -0.03 -0.02 -0.04 VELE NUME MEAN 14.00 2.57 -0.02	RMS ØSC 2.75 91 0.46 73 0.48 121 0.19 92 0.13 50 DCITY 20.0 KN BER OF WAVE 1 RMS ØSC 2.64 98 0.44 81 0.48 126	ENCOUNTER AVE 18.37 3.25 0.79 0.28 0.22 NOTS FE ENCOUNTER AVE 16.94 3.13 0.79	KS 129 ERAGE 11.59 2.08 -0.55 -0.30 -0.25 LAP DEFEN KS 125 ENAGE 10.73 2.03 -0.55	1/3 } 20 • 10 3 • 66 1 • 23 0 • 40 0 • 30 20 TI ON 1 1/3 • 15 • 73 3 • 51 1 • 25	HIGHEST 9.50 1.82 -0.75 -0.41 -0.31 5.0 DEG HIGHESI 8.65 1.77 -0.80
PITCH, DEG HEAVE, FT BOW ACCEL, G CG ACCEL, G STERN ACCEL, G RUN NO 346 PITCH, DEG HEAVE, FT	NUME MEAN 15.23 2.65 -0.03 -0.02 -0.04 VELE NUME MEAN 14.00 2.57	RMS ØSC 2.75 91 0.46 73 0.48 121 0.19 92 0.13 50 DCITY 20.0 KN BER OF WAVE 1 RMS ØSC 2.64 98 0.44 81 0.48 126	AVE 18.37 3.25 0.79 0.25 0.22 NUTS FE ENCOUNTER AVE 16.94 3.13 0.79 0.27	KS 129 ERAGE 11.59 2.08 -0.55 -0.30 -0.25 LAP DEFEN KS 125 ENAGE 10.73 2.03 -0.55	1/3 } 20 • 10 3 • 66 1 • 23 0 • 40 0 • 30 ECTION 1 1/3 3 15 • 73 3 • 51 1 • 23 0 • 37	HIGHEST 9.50 1.82 -0.75 -0.41 -0.31 5.0 JEG HIGHEST 8.65 1.77 -0.80 -0.42

TABLE 10.10

WITHOUT CHINE FLAPS LCG = 10.5 FT

RUN NØ 369	VEL 00	TITY 30.0 KN	ats fi	AP DEKLE	CO LON	SAD DEG
NOW 149 307	VELO	3111 30+0 KW	015	AI DEFE	CITON	3.0 DE0
	NUMBI	ER OF WAVE E	NCOUNTER	RS 110		
	MEAN	RMS ØSC				
PITCH, DEG	10.32	6.31 58	17.78	0.78	20.75	-1.31
	4.00	1.32 57		2.34		
BOW ACCEL. G	-0.02	0.97 87		-0.76	2.79	-1.31
CG ACCEL, G	0.05	0·49 85	0.70	-0.46	1.00	-0•੪1
STERN ACCEL, G	-0.01	0.47 86	0.51	-0.63	0.37	-0.90
RUN NØ 364	VELO	CITY 30.0 KN	UIS FL	AP DEFLE	ECTION	7.5 DEG
	NUMBI	ER OF WAVE E	NCØUNTER	RS 111		
	MEAN	KMS USC	AVE	RAGE	1/3	HIGHEST
PITCH, DEG	_	4.72 67	12.93	1.86	16.19	-1.20
HEAVE, FT	3.69	0.98 61	4.47	2.52	5.60	1.69
BOW ACCEL, G	0.03	0.91 105		-0.54		
CG ACCEL. G	0.09	0.68 85	0 • 5 ರ	-0.42	0.85	-0.72
STERN ACCEL, G	0.00	0.37 83	0.42	-0.47	0.75	-0.75
RUN NO 363	VELO	CITY 30.0 KN	015 FL	AP DEFLE	ECTION 1	O.O DEG
	NUMBI	ER ØF WAVE E	NCOUNTER	kS 114		
	MEAN	KMS 050	AVE	ERAGE	1/3	HIGHEST
PITCH, DEG	6.95	3.39 74	10.65	2.59	13.15	0.22
HEAVE, FT	3 - 43	0.65 57	4.33	2.70	4.92	2.41
BOW ACCEL. G	0.00	0.74 115	1.32	-0.63	2.22	-1.05
CG ACCEL. G	0.06	0.32 97	0.50	-0.34	0.73	-0.59
STERN ACCEL. G	-0.01	0.27 79	0.34	-0.44	0.52	-0.65

TABLE 10.11

WITH CHINE FLAPS LCG = 12.5

RUN NO 197	VELO	CITY 15.0 KM	015 FLAP DE	CFLECTION 0.0 DEG
	NUMB	ER OF LAVE E	NCOUNTERS 30)
•	MEAN	KMS ØSU	AVERAGE	1/3 H1GHES1
PITCH, DEG	15.98	1.77 40	17.73 13.	
HEAVE, FT	1.92	0 • 46 33	2.45	
BOW ACCEL, G	0.00	0.31 64	0.40 -0.	
CG ACCEL, G	0.02	0.16 54	0.21 -0.	
STERN ACCEL, G	-	0.07 41	0.03 -0.	19 0.03 -0.24
KUN NØ 161	VELU	CITY 15.0 KN	UIS FLAP DE	EFLECTION 15.0 DEG
	NUME	ER OF LAVE E	NUJUNTERS 3)
	MEAN	RMS 05C	AVENAGE	1/3 HIGHEST
PITCH, DEG	8 • 39	1.15 37		20 10.70 6.23
HEAVE, FT	0.76	0.32 26	1.13 0.	
BOW ACCEL. G	-0.04	0.16 59	0.17 -0.2	
CO ACCEL. G	- (- 10	0.09 44	0.03 -0.8	
STERN ACCEL, G	-0.07	0.06 39	0.02 -0.	
RUN NO 193	VELJ	CITY SO.6 KV	OTS FLAP DI	EFLECTION 0.0 DEG
	NUME	ER OF WAVE E	NUUUNIERS 30	J
	MEAN	KMS ØSC	AVENAUE	1/3 HIGHEST
PLICE, DEG	11.93	2.77 34		47 16.75 6.27
HEAVE, F1	3.31	0.57 32	3.95 2.	57 4.35 2.25
BOW ACCEL, G	9.08	0.56 49	0.87 -0.	
CG ACCEL, G	() . () 4	0.27 51	0.37 -0.	
SIERN ACCEL. G	-0.02	0.11 47	0.10 -0.	17 0.21 -0.24
KUN NO 158	VELO	CITA SOFO KV	UTS FLAP D	EFERTION 15.0 DEC
	NUML	EN OF LAVE E	NUCLUNIERS 3)
	MEAN	KM5 050	AVENAGE	1/3 HIGHES1
PITCH, DEG	7.31	1.62 34	9.05 5.	
HEAVE. FT	2.69	0.39 30	3.12 2.	29 3.41 1.93
BOW ACCEL, G	0.00	0.38 61	0.51 -0.	35 0.35 -0.65
CG ACCEL, G	0.17	0.19 51	C. 40 -0.	07 0.53 -0.23
STERN ACCEL. G	0.03	0.10 39	0.13 -0.	13 0.25 -0.19

TABLE 10.12

WITH CHINE FLAPS LCG = 12.5 FT

RUN NØ 191	VELØ	CITY 85.0 KN	UIS FL	AP DEFLE	CTION	0.0 DEG
	NUMP	ER OF WAVE E	NCOUNTER	\$ 30		
	MEAN	KMS USC	AVE	KAGL	1/3	HIGHESI
PITCH, DEG	8 • 19		12.28			1.15
HEAVE, FT	3.60	0.70 23		2.77		2.33
BOW ACCEL, G			1.10			-0.93
			0.44			-0.53
			0.12			
STERN ACCEL, G	-0.06	0.17 46	0 • 12	-0.29	0.21	-0•43
KUN NO 156	UE1 14	CITY 25.0 KN	MIS EL	V = 118.8.1 F	(I I (N) 1	OSO DEG
001 601 700	V E L 1)	CITT 25.0 KN	313 12		.011511 1	0.0 550
	NUMB	ER OF WAVE E	NCOUNTER	S 30		
	MEAN	KMS USU	AVE	KAGE	1/3	HIGHEST
PITCH, DEG	3.46	1.82 33	7.33	3 • 1213	5 • 45	1 • 43
	3.30			2.81	4.10	2.48
BOW ACCEL, G	-0.02	0.54.56		-0-49		
		0.27 55		-0.19	0.64	
			0.21			
STERN TOOLS O	3 .33					
RUN NØ 157	VELØ	CITY 25.0 KN	1015 FL	AP DEFLE	C115N 1	2.5 DEG
	NUMB	ER OF LAVE E	NCOUNTER	\$ 30		
	MEAN	KMS USC	AVE	KAGL	1/3	HIGHESI
PITCH: DEG			6 • 40			
HEAVE, FI	3.16	0.35 26	3.55			2.47
BOW ACCEL. G	0.00	0.46 56				-0.76
CG ACCEL, G	0.11	0.24 47	0.39		0.50	
STERN ACCEL, C	0.05	0.12 41	0.19		0.20	
SIEM ROOLS (.,,,,	0.15	0.17		0 - 2	
KUN NO 189	VELO	CITY 25-0 KN	1015 FL	AP DEFLE	ECTION 1	2.5 026
	NHME	ER OF WAVE E	NCOUNTER	5 30		
	(,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	in the second				
	MEAN	R 15 050		NAGE		HIGHEST
	4.65			2.04		
HEAVE, FI	3.00	0.42 25		と・27		2.20
BOY ACCEL, G	-0.01	0.49 54		-0.44		-0.84
CG ACCEL, G	0.03	0.25 46	Ų•35	-0.25	0.49	-0.51
STERN ACCEL. G	-0.04	0.12 39	0.12	-0.22	د ا • ∪	-0.31

TABLE 10.13

WITH CHINE FLAPS LCG = 12.5 FT

RUN NØ 152	VELO	CITY 30.1 KNO	JIS FLAP	DEFLECTION	5.0 DEG
je.	ST IM SE	ER OF WAVE ER	dr'alixi i birs	30	
	(VOND)	EN OF WAVE EN	VOODNIENS (,0	
	MEAN	KMS 050	AVERAGE	1/3	HIGHESI
PITCH, DEG	4.56	2.43 25	7 • 17	43 8.66	-0.39
HEAVE, FT	3.40	0.60 21	4.15 2		2.21
BOW ACCEL, G	0.02	0.71 47	1.07 -0	44 1.92	
CG ACCEL. G	0.06	0.37 45	0.52 -0.		-0.61
STERN ACCEL. G	-0.04	0 • 17 41	0.15 -0.	25 0.32	-0.38
KUN NO 183	VELO	CITY 30.0 KNO	UTS FLAP	DEFLECTION	5.0 DEG
	NIIMB	ER OF WAVE EN	CMUNIFES :	30	
	110115		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		
	MEAN	KMS USC	AVERAGE		HIGHES!
PITCH, DEG	4.57	2.41 25	7 • 10		-0.23
HEAVE, FT	3.44	0.63 21	4.19 2	19 4.70	2 • 33
BOW ACCEL. G	$\Theta \circ \Theta \mathcal{F}$	0.67 47	1.21 -0	39 1.99	-0.89
CG ACCEL. G	0.04	0 · 37 43	0.50 -0.	53 0.25	-0.64
STERN ACCEL, G	0.02	0 · 1 5 45	0.18 -0.	18 0.34	-0.33
KUN NØ 154	Vict of	CITY 30.1 KN	1ES FLAP	DEFLECTEON	7.5 DEG
	¥ 220	0			
	NAWR	ER OF WAVE E	NCOUNTERS	30	
	MEAN	KMS USC	AVERAG	1/3	HIGHESI
PITCH, DEG	3.95	1.99 27	6 • 19 1	39 7.42	-0.36
HEAVE, FT	3 • 28	0.51 20	3.76 2	75 4.34	2.33
BOW ACCEL, G	0.03	0.63 49	1.05 -0	33 1.63	-0∙ ४४
CG ACCEL G	0 • 11	0.34 50	0.53 -0	• 19 0 • 77	-0.54
STERN ACCEL, G	0.00	0 • 16 39	0.19 -0	•20 0•30	-0.32
KUN NØ 185	VELO	CITY 30.0 KN	OIS FLAP	DEFLECTION	7.5 DEG
	מאטא	ER OF WAVE E	NCOUNTERS :	30	
	MEAN	ĸ M5 U5C	AVERAG	r 174	HIGHES1
PITCH, DEG	3.99	2.09 29	5.75 1		
HEAVE, FT	3.25	0.60 20		• 55 4• 39	
BOW ACCEL, G	0.07	0.63 47	1.06 -0		
CG ACCEL, G	0.05	0.34 43		31 0.70	
STERN ACCEL, G	-0.08	0.17 41		• 23 0 • 27	

TABLE 10.14

WITH	CHINE	FLAPS	LCG =	12.5	FT

RUN NO 155	VELO	CITY 30.0 KN	OTS FLAP DEF	LECTION 10.0 DEG
	ผพบพ	EK OF WAVE E	NCOUNTERS 30	
	HEAN	RMS ØSC	AVERAGE	1/3 H1GHE5T
PITCH, DEG	3.30	1.62 32	4.85 1.52	6.06 -0.14
HEAVE, FT	3.11	0.44 20	3.70 2.64	4.01 2.34
BOW ACCEL, G	0.10	0.54 52	0.88 -0.30	1.43 -0.77
CG ACCEL G	0.14	0.34 44	0.51 -0.16	0.74 -0.49
STERN ACCEL, G	0.03	0.14 36	0.20 -0.17	0.30 -0.29
(11) NO NO	113 1 74	##### 22 O 45	or at Au air	The CTICAL TO BE INCO
RUN NØ 187	VELU	CITY 30.0 XN	UIS FLAP DER	LECTION 12.5 DEG
	ผบพธ	ER OF WAVE E	NCOUNTERS 30	
	MEAN	KMS 050	AVERAGE	I/3 HIGHESI
PITCH, DEC	2.60	1.26 30	3.94 1.17	
HEAVE, FI	8.74	0.42 23	3.03 2.42	2 3.53 2.13
BOK ACCEL. 6	0.06	0.39 59	0.43 -0.25	0.06 -0.63
CG ACCEL. C	0.03	0.21 43	0.27 -0.21	2 0.41 -0.44
STERN ACCEL. C	-0.03	0.13 36	0.15 -0.28	2 0.23 -0.33
		7. Y. 2		1. W. M. A. A. M. M.
KUN NJ 157	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	011Y 35.0 K	DIS FLAP DEF	LECTION 5.0 DEG
	NUMB	EK OF LAVE E	NCJUNTERS 30	
	MEAN	11.45 JSU	HVENAGE	1/3 4164551
PITCH, DEG	3.70	2.33 25	6.00 0.0	
HEAVE, FT	3.39	0.60 13	4.17 2.78	3 4.79 2.45
BOK ACCEL. G	0.03	0.74 50	1.10 -0.35	1.71 -1.03
CG ACCEL, G	0.19	0.41 47	0.65 -0.1	4 6.95 -0.53
STERN ACCEL. G	0.04	0.81 44	0.88	0 • 43 -0 • 33
		art TV - 15 - 15 - 25		ELECTION SOC DEG
KUN N) 188	V 1:121)	CIH 35•0 K	1913 FERR ME	LECTIAN 3.0 DEG
	NUMB	ER OF WAVE B	NC JUNIERS 30	
	MEAN	K45 350	AVERAGE	1/3 #16#251
PITCH, UEG	3.61	2.15 23	5.76 0.38	5 7.76 -0.82
HEAVE, F1	3.37	0.61 19	4.10 2.70	
BUW ACCEL, G	0.08	0.7% 52	1.10 -0.2.	
CG ACCEL. G	0.05	0 • 41 53	0.51 -0.20	
STERN ACCEL, G	-0.04	0.21 43	0.17 -0.23	(L.30 -0.49

TABLE 10.15

WITH CHINE FLAPS LCG = 12.5 FT

VELOCITY 35.0 KNOIS FLAP DEFLECTION 7.5 DEG KUN NO 177 NUMBER OF WAVE ENCOUNTERS 30 MEAN 1/3 HIGH=51 2.89 6.20 -1.02 PITCH, DEG 2.15 FT 3.07 2 • 50 4 • 25 **HEAVE**, BOW ACCEL, G 0.18
CG ACCEL, G 0.06
STERN ACCEL, G -0.02 1.65 -0.80 0·41 -0·27 0·17 -0·25 0.66 -0.65

0.34 -0.44

TABLE 11

SEAKEEPING STATISTICS FOR CONFIGURATION S-1 SIGNIFICANT HEIGHT = 2.2 FT DISPLACEMENT = 55,000 LB WITHOUT CHINE FLAPS LCG = 12.5 FT

	WITHOUT	CHINE FLAPS	LCG = 1	2.5 11		
		ITY 20.0 KN	ars ELA	P DEFLET	:T(3N 5	O DEG
KUN NO 404	VELOC	114 SO.0 KW	MID LEN	, DELECT	,	
	NUMBE	N OF WAVE E	NCOUNTERS	137		
	M 17 (18)	KMS 050	AVER	AGE	1/3 HJ	GHE SI
0.70	MEAN 14.71	1.38 98	16.94			10.64
1 2 1 0	2.06		2.58	1.56	2.37	1.59
HEAVE, FT		0.36 135		-0-46	0.87	-0.65
BOW ACCEL, G	-0.04	0.17 91		-0.28	0.36	-0.38
CG ACCEL. G	-0.04	0.13 62		-0.26	0.23	-0.32
STERN AUCEL. G	-1) • 0 4	0.10 (2				
RUN NO 401	VELO	CLIA 50.0 KV	IUIS FLA	AP DEFLE	CT1 JV 7	.5 DEG
	NUMBI	EK OF WAVE E	ENCOUNTER:	5 140		
			AVE		1/3 H	IGHESI
		RMS 950 1.73 100	15.46	11.25	16 - 47	4.67
PITCH, DEG	13.47	0.38 77	2.45	1.51	2.74	1 - 2 1
HEAVE, FT	1.96	0.34 134	0.50	-0.44	0.79	-0.66
BOW ACCEL, G	-0.04	0.16 92	0.85	-0.28	0.34	-0.39
CG ACCEL. G	0.00	0.12 67	0.17	-0.28	0.25	-0.35
STERN ACCEL. G	-()•()4	0.12 67	.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	•		
RUN NO 407	VELO	CIIX 50.0 K	NOTS FL	AP DEFLE	CTION IC).U DEG
	NUME	ER OF WAVE	ENCOUNTER	5 133		
		(1)	AVE	TRAGE	1/3 1	HIGHEST
	MEAN		13.64		14.74	
PITCH, DEG	11.97		2.12	1.27	2.36	0.49
HEAVE, FT	1 • 68	0.33 70	0.41	-0.39	0.64	-0.57
BOY NCCEL. G	-0.03	Q	0.23	-0.26	0.30	
CG ACCEL. G	-0.01	0.14 74	U• 18	-0.25	U•26	-0.32
STERN ACCEL. G	-0.03	0.12 68	0.10			
		0.0114 30.0 k	7. 31 C F1	AP DEFL	ECTI 3N	2.5 DEG
KUN NO 398						
	MUK.	BER OF WAVE	ENCOUNTE.	KS 109		
	44 - /\ A1	KM5 050	ΔV	FRACE		HIGHEST
	MEAN	2.88 76		5.06	13.67	2.41
PITCH, DEG	8.51	0.63 56		2.46	4.54	1.90
HEAVE, FI	3.17	0.64 123		-0.56	1.57	-0.95
BOW ACCEL. G	_	0.31 105		-0.39	0.72	-0.61
CG ACCEL, G	0.01	0.24 31		-0.41	0.45	-0.61
STERN ACCEL. G	-0.01	0.2.1 01				

TABLE 11.2

WITHOUT	CHINE	FLAPS	LCG =	12.5	FT
---------	-------	-------	-------	------	----

RUN NØ 395	VEL Ø	CITY 30.0 KN	JIS FL	AP DEFLE	CILON	5.0 DEG
	NNWR	EN OF WAVE EN	NCOUNTER	5 107		
	MEAN	RMS ØSC	AVE	KAGE	1/3	HIGHEST
PITCH, DEG	7.64	2.38 82	10.03	4.87	11.73	2.72
HEAVE, FT	3.02	0.52 56	3.70	2.41	4.10	2.01
BOW ACCEL: G	0.00	0.59 127	0.99	-0.56	1.61	-0.95
CG ACCEL, G	0.01	0.29 105	0 • 43	-0.37	0.62	-0.60
STERN ACCEL, G	-0.01	0.22 81	0.29	-0.36	0.45	-0.54
RUN NO 398		JITY 30.0 KNO EN OF WAVE ED			.C113N	7.5 DEG
	ום ויוט א,	EN OF WHAT EI	100011111	5 110		
	MEAN	KMS OSC	AVE	KAGE	1/3	HIGHESI
PITCH, DEG	6 • 45	1.91	8 - 42	4.22	9.61	2 • 3 ت
HEAVE, FT	2.76	0.44 54	3.36	2.25	3.70	1.86
BOW ACCEL, G	-0.01	0.53 133	U• &6	-0.54	1 • 42	-U•38
CG ACCEL, G	0.05	0.25 103	0 • 41	-0.32	0.56	-0.54
STERN ACCEL, G	-0.01	0.20 81	0.26	-0.36	0.39	- U • 51

TABLE 11.3

WITH CHINE FLAPS LO	CG =	12.	5	FT
---------------------	------	-----	---	----

KUN NØ 232	VELO	CITY 15.0 KM	OTS FLAP DEFI	LECTION 0.0 DEG
	พบพธ	ER OF WAVE E	INCOUNTERS 30	
		KMS USU	AVERAGE	1/3IGHEST
PITCH, DEG	15.61	1.72 40	17.51 13.59	18.71 12.21
HEAVE, FT	2.11	0.43 31	2.65 1.58	2.97 1.22
BOW ACCEL: G	-0.01	0.30 60 0.15 46	0.39 -0.31	0.69 -0.56
CG ACCEL, G	0.01	0.15 46	0.22 -0.20	0.33 -0.32
STERN ACCEL, G	-0.06	0.07 41	0.06 -0.17	0.11 -0.21
RUN NG 230	VELO	CITY 15.0 KN	IGTS FLAP DEFI	LECTION 15.0 DEG
	NUMB	ER OF WAVE L	ENCOUNTERS 30	
	MEAN	MMS USC	AVERAGE	1/3 HIGHEST
PITCH, DEG	7 • 42	i 12 39	8 • 54 6 • 2.4	9 - 47 5 - 33
HEAVE, FT	0.62	0.31 29	0.95 0.26	1.19 0.00
BOW ACCEL: G	0.00	0.15 47		0.34 -0.33
CG ACCEL. G	0.02	0.08 40	0.14 -0.12	0.19 -0.18
STERN ACCEL. G			0.03 -0.15	0.07 -0.19
RUN NO 234	VELO	CITY 20.0 K	OTS FLAP DEF	LECTION 0.0 DEG
	NUMB	ER OF LAVE E	ENCOUNTERS 30	
	HEAN	EMS USC	UNE RAGE	1/3 HIGHEST
PITCH, DEG	11.12	2.68 34	13.94 7.85	15.97 5.82
				4.27 2.27
HOW ACCEL. G	0.05			1.55 -0.90
	0.04			0.61 -0.50
STERN ACCEL, G				0.20 -0.30
MUN NO 228	VELO	00114 59.0 K	NOIS FLAP DEF.	LECTION 15.0 DEG
	NUMB	ER OF NAVE F	ENCCUNTERS 30	
	иеам	KMS 050	AVERAGE	1/3 H16HEST
PITCH, DEG	6.24	1 • 45 33	7.68 4.63	3.76 3.36
HEAVE, FT	2.51	0.35 26	2.90 2.13	3.16 1.31
SOW ACCEL: G	0.02	9 • 32 57	0.42 -0.31	0.79 -0.55
CG ACCEL. G	0.04	0.17 43	0.24 -0.17	0.35 -0.32
STERN ACCEL. G	0.03	0 • 10 45	0.17 -0.11	0.25 -0.19

TABLE 11.4

WITH CHINE FLAPS LCG	= 12.	5 FT
----------------------	-------	------

KUN NO 256	VELO	CITY 25.0 KN	OTS FLA	P DEFLE	CHON	0.0 DEG
	NUMBI	ER OF WAVE EN	NCOUNTERS	30		
	MEAN	KMS USC	AVEK	A Gr	173	HIGHEST
PITCH, DEG	7.54	3.22 27		3.31		0.88
HEAVE, FT	3.82	0.68 22		3.04		2.69
BOW ACCEL, G	0.02	0.70 48		-0 - 48	2.20	
CG ACCEL, G	0.06	0.35 54		-0.22		-0.55
STERN ACCEL, G		0.16 46		-0.25		
RUN NO 224	VELO	CITY 25.0 KN	UTS FLA	P DEFLE	CTION I	2.5 DEG
	NUMB	ER OF WAVE E	NCOUNTERS	30		
	MEAN	KMS ØSC	AVER	AGE	1/3	HIGHEST
PITCH, DEG	5 • 33	2.11 30	7.59			0.93
HEAVE. ET	3.32	0.49 27		2.34		2.47
BØW ACCEL, G	0.01	0.57 49		-0.49	1.61	-0•४४
CG ACCEL, G	0.04	0 • 29 49	0.41	-0.26	0.65	-0.54
STERN ACCEL. G	-0.03	0 • 1 4 4 1	0.12	-0.24	0.25	-0.32
RUN NO 218	VELØ	CITY 30.0 KN	OTS FLA	P DEFLE	CIION	Z.5 DEG
	NUMB	ER OF WAVE E	NCOUNTERS	30		
	ИEAN	KMS 050	AVER	AGE	173	HIGHEST
PITCH, DEG	4.66	2.61 24	7 • 47		ರ∙85	-0.76
HEAVE, FT	3.50	U•6/ ZU		2.70	4.54	
BOW ACCEL, G	0.04	0·73 48		-0.34	2.11	
CG ACCEL, G	0.05	0.39 47		-0.25	0.32	-0.66
STERN ACCEL, G	-0.05	0.20 40	0 • 14	-0.32	0.33	-0 • 46
KUN NG 220	VELU	CITY 30.0 KN	OTS FLA	P DEFLE	CIION	5.0 DEG
	NUMB	ER OF WAVE E	NCOUNTERS	30		
	MEAN	KMS OSC	AVER	AGE	1/3	HIGHEST
PITCH, DEG	4.04	2.21 27		1.29	7.79	-0.43
HEAVE, FT	3.45	0.56 22	4.13	2.87	4.54	2.56
BOW ACCEL. G	0.03	0.68 49	1.07	-0.36	1.72	-0.94
CG ACCEL, G	0.05	0.36 50	0•48	-0.25	0.70	
STEKN ACCEL, G	-0.04	0.19 42	0.16	-0.25	0.31	-0.41

TABLE 11.5

WITH CHINE FLAPS	LCG = 12.5 FT

RUN NO 222	VELO	CITY 30.0 K	NOTS FLAN	DEFLE	CTION	7.5 DEG
	NUME	ER OF WAVE I	ENCOUNTERS	30		
	MEAN	RMS OSU	AVEKA			_
PITCH, DEG	3.35	1.76 30	4.97			
HEAVE, FT	3.24	0.49 21		2.75		2.41
BOW ACCEL, G	0.02	0.57 55	0.80 -			-0.87
	0.05	0.31 49	0 • 41			-0.58
STERN ACCEL, G	0.31	0.20 43	0.53	0.08	0 • 68	-0.09
KUN NO 216	VIEL 0	CITY 35.0 K	COTTO CLAI	ט ואפור כ	CTION	0 5 000
NON NO 210	VELO	0111 33•0 K;	1015 FEMI	DEFLE	V!O 1 1 O.	2.3 050
	MUMB	ER OF WAVE I	ENCOUNTERS	30		
	MEAN	KMS OSC	AVERA	AGE	1/3	HIGHEST
PITCH, DEG	3.45	2.19 23	5.69			-1.00
HEAVE, FT	3.55	0.61 19	4.30			2.61
BOW ACCEL, G	0.03	0.77 54	1 • 17	-0-33		-1.02
CG ACCEL, G	0.05	0.44 48	0.61	-0.27	0•೮೨	-0.74
STERN ACCEL, G	-0.04	0.24 40	0.17	-0.32	0.39	-0.56
RUN NO 212	VELO	CI1Y 35.0 K	NOTS FLAI	DEFLE	CTION	5.0 DEG
	NUMB	ER OF WAVE I	ENCOUNTERS	30		
			AVERA			
PITCH, DEG	2.88	1.86 23	4.75		5.82	
HEAVE, FT	3.29	0 • 49 19	3.97			2 • 40
BOW ACCEL, G	0.03	0.68 46		-0.42	1.70	
UG ACCEL, G	0.05	0.39 41	0.56			-0.69
STERN ACCEL, G	-0.04	0.20 39	0.17	-0.27	0.36	-0.46
RUN NU 214	VELO	CITY 35.0 K	NOTS FLAI	म् । संस्तुतः च	T. F.F. (AN)	7.5 DEG
	V 5.2 0	01 00.0 11.		02.2.	.0.1011	110 000
	NUME	EK OF WAVE	ENCOUNTERS	30		
	MEAN	KMS USC	AVEN	4GE	1/3	HIGHESI
PITCH, DEG	1.98	1 • 49 29			4.35	
HEAVE, FT	3.14	0.38 21		2.72		2.37
BOW ACCEL. G	0.01	0.58 47	0.30		1.25	-0.92
CG ACCEL, G	0.04	0.32 46	0.36		0.59	-0.59
STERN ACCEL. G		0.18 36		-0.24		-0.36

TABLE 12

SEAKEEPING STATISTICS FOR CONFIGURATION S-3 SIGNIFICANT HEIGHT = 2.2 FT DISPLACEMENT = 55,000 LB WITHOUT CHINE FLAPS BOW RAMP EXTENDED LCG = 12.5 FT

100 450	net c	01 TM 42 0 4	von Tree lore	A.S. (1971)	://TI 0	0 000
KUN NO 453	VEI.0	CITY 15.0 KM	1015 FL	AP DEFLE	.CIION O	• O DEG
	NUMB	ER OF WAVE I	ENCOUNTER	kS 183		
	MEAN	KMS OSC	AVE	IKA GE	1/3 H	IGHESI
PITCH, DEG	17.91	1.64 74		15.87		14.47
HEAVE, FT	0 • 38	0.35 56	0.83		1.12	
BOW ACCEL, G	-0.06	0.23 33	0.32	-0.36	0.53	
CG ACCEL, G	-0.06	0.11 41	0.16	-0.27	0.22	
STERN ACCEL. G	-0.04	0.08 16	0• 1੪	-0.21		
0.2			V • • • •			
RUN NO 451	VEL0	CITY 15.0 KM	NOTS FL	AP DEFLE	ECTION 5	• O DEG
	ИПWR	ER OF WAVE L	ENCOUNTER	KS 102		
	MEAN	KMS OSC	AVE	RAGE	1/3 H	IGHEST
PITCH, DEG	15.19	1.59 77		13.22		
HEAVE, FT	0.26	0.33 59		-0.17	0.96	
BOW ACCEL. G	-0.05	0.22 82	0.30		0 • 40	
CG ACCEL. G	-0.06	0.10 34	0.13			
STERN ACCEL, G	-0.03	0.09 22	0.17	-0.28		-0.27
				la l	* 1	
RUN NO 455	VELO	CITY 15.0 K	NOTS FL	AF DEFLE	ECTION TO).U DEG
RUN NO 455		CITY 15.0 KN EN OF WAVE 1			ECTION TO).U DE6
RUN NO 455	NUMB	EN OF WAVE I	EN COUNTE	(১ 95	01 NOITOS 1/3 F	
			TET NUODNE EVA	(১ 95	1/3 H	HI GHEST
PITCH, DEG	HEAN	EN OF WAVE I	ENCOUNTET AVE 14:40	KS 95 EKAGE	1/3 H	416az5f 9•01
PITCH, DEG HEAVE, FI	NUMB MEAN 12•27	EN OF WAVE 1 MMS 050 1-71 73	ENCOUNTET AVE 14:40	KS 95 EKAGE 10±07	1/3 H 15:66	416ma5f 9:01 -0:53
PITCH, DEG HEAVE, FI HOW ACCEL, G	NUMB MEAN 12.27 U.13	EN OF WAVE 1 NMS OSC 1-71 73 0-33 58	AVE 14: 40 0: 56	KS 95 EKAGE 10:07 -0:32	1/3 F 15.56 0.31	416ma5f 9:01 -0:53
PITCH, DEG HEAVE, FI BOW ACCEL, G	NUMB MEAN 12.27 U.13 -0.04	MEN OF MAVE 1 MMS 0SC 1-71 73 0-33 58 0-21 80	AVE 14: 40 0: 56 0: 32	(S 95 ENAGE 10:07 -0:32 -0:34	1/3 F 15:66 0:31 0:50	9:01 -0:53 -0:46
PITCH, DEG HEAVE, FI HOW ACCEL, G CG ACCEL, G	NUMB MEAN 12.27 U.13 -0.04 -0.04	MEN OF MAVE 1 MMS 050 1-71 73 0-33 58 0-21 80 0-10 40	AVE 14: 40 0: 56 0: 32 0: 17	KS 95 EKAGE 10:07 -0:32 -0:34 -0:23	1/3 F 15.66 0.31 0.50 0.82	9:01 9:01 -0:53 -0:46 -0:29
PITCH, DEG HEAVE, FI HOW ACCEL, G CG ACCEL, G	NUMB MEAN 12.27 U.13 -0.04 -0.04 -0.01	MEN OF MAVE 1 MMS 050 1-71 73 0-33 58 0-21 80 0-10 40	AVE 14: 40 0: 56 0: 32 0: 17 0: 20	KS 95 ERAGE 10:07 -0:32 -0:34 -0:23 -0:19	1/3 F 15:56 0:31 0:50 0:23	416H25T 9:01 -0:53 -0:46 -0:29 -0:25
PITCH, DEG HEAVE, FI HOW ACCEL, G CG ACCEL, G STERN ACCEL, G	NUMB MEAN 12.27 U.13 -0.04 -0.04 -0.01	MAS 050 1-71 73 0-33 58 0-21 80 0-10 40 0-10 28	AVE 14: 40 0: 56 0: 32 0: 17 0: 20	KS 95 ERAGE 10:07 -0:32 -0:34 -0:23 -0:19	1/3 F 15:56 0:31 0:50 0:23	416H25T 9:01 -0:53 -0:46 -0:29 -0:25
PITCH, DEG HEAVE, FI HOW ACCEL, G CG ACCEL, G STERN ACCEL, G	NUMB MEAN 12.27 U.13 -0.04 -0.04 -0.01 VELC	MANUAL MA	AVE 14: 40 0: 56 0: 32 0: 17 0: 20 NUTS FE	KS 95 ERAGE 10:07 -0:32 -0:34 -0:23 -0:19 LAP DEFER	1/3 F 15.56 0.31 0.50 0.23 0.25	9:01 -0:53 -0:46 -0:29 -0:25
PITCH, DEG HEAVE, FI BOW ACCEL, G CG ACCEL, G STERN ACCEL, G	NUMB MEAN 12.27 U.13 -0.04 -0.04 -0.01 VELC NUMB	MS 050 1-71 73 0-33 58 0-21 80 0-10 40 0-10 28 00114 20-0 69	AVE 14: 40 0: 56 0: 32 0: 17 0: 20 NOTS FE	KS 95 ERAGE 10:07 -0:32 -0:34 -0:23 -0:19 LAP DEFER	1/3 F 15:56 0:31 0:50 0:23 0:25	416m25T 9:01 -0:53 -0:46 -0:29 -0:25
PITCH, DEG HEAVE, FI BOW ACCEL, G CG ACCEL, G STERN ACCEL, G RUN NO 425	NUMB MEAN 12.27 0.13 -0.04 -0.04 -0.01 VELC NUMB MEAN 14.72	MS 050 1-71 73 0-33 58 0-21 80 0-10 40 0-10 28 0011Y 20-0 49 0EK 0F MAVE 6	AVE 14: 40 0: 56 0: 32 0: 17 0: 20 NUTS FE ENCOUNTER AVE	KS 95 ERAGE 10:07 -0:32 -0:34 -0:23 -0:19 LAP DEFENANT 132 ERAGE 12:12	1/3 F 15:56 0:31 0:50 0:22 0:25	9:01 -0:53 -0:46 -0:29 -0:25
PITCH, DEG HEAVE, FI BOW ACCEL, G CG ACCEL, G STERN ACCEL, G NUN NO 425	NUMB MEAN 12.27 0.13 -0.04 -0.04 -0.01 VELC NUMB MEAN 14.72 2.10	NMS 050 1-71 73 0-33 58 0-21 80 0-10 40 0-10 28 0011Y 20-0 KB 0011Y 20-0 KB 0011Y 20-0 KB 0011Y 20-0 KB	AVE 14: 40 0: 56 0: 32 0: 17 0: 20 NUTS FE ENCOUNTER AVE 16: 99 2: 64	KS 95 ERAGE 10:07 -0:32 -0:34 -0:23 -0:19 LAP DEFER NS 132 ERAGE 12:12 1:60	1/3 F 15:56 0:31 0:50 0:23 0:25 20f10N S	116H25T 9:01 -0:53 -0:46 -0:29 -0:25 0:0 DE6
PITCH, DEG HEAVE, FI BOW ACCEL, G CG ACCEL, G STERN ACCEL, G NUN NO 425 PITCH, DEG HEAVE, FI EOW ACCEL, G	NUMB MEAN 12.27 U.13 -0.04 -0.04 -0.01 VELC NUMB MEAN 14.72 2.10 -0.04	MAS 050 1.71 73 0.33 58 0.21 80 0.10 40 0.10 28 00ITY 20.0 KB MS 050 2.02 101 0.42 54 0.40 135	AVE 14: 40 0: 56 0: 32 0: 17 0: 20 NUTS FE ENCOUNTER AVE 16: 99 2: 64 0: 59	KS 95 ERAGE 10:07 -0:32 -0:34 -0:23 -0:19 LAP DEFLE KS 132 LIVAGE 12:12 1:60 -0:48	1/3 F 15:56 0:31 0:50 0:23 0:25 20ffon 5	9:01 -0:53 -0:46 -0:29 -0:25 0:0 DEG
PITCH, DEG HEAVE, FI BOW ACCEL, G CG ACCEL, G STERN ACCEL, G NUN NO 425	NUMB MEAN 12.27 0.13 -0.04 -0.04 -0.01 VELC NUMB MEAN 14.72 2.10	NMS 050 1-71 73 0-33 58 0-21 80 0-10 40 0-10 28 0011Y 20-0 KB 0011Y 20-0 KB 0011Y 20-0 KB 0011Y 20-0 KB	AVE 14: 40 0: 56 0: 32 0: 17 0: 20 NUTS FE ENCOUNTER AVE 16: 99 2: 64 0: 59	AS 95 ERAGE 10:07 -0:32 -0:34 -0:23 -0:19 LAP DEFLOAD LABE 12:12 1:60 -0:48 -0:34	1/3 F 15.56 0.31 0.50 0.25 0.25 20f10N 5	9:01 -0:53 -0:46 -0:29 -0:25 0:0 DEG

TABLE 12.2

WITHOUT CHINE FLAPS BOW RAMP EXTENDED LCG = 12.5 FT

K U N NO 428	VELØ	CITY 50.0 KV	IOTS FL	AP DEFLE	CTI JN C	7.5 DEG
	NUMB	ER OF WAVE E	CNCOUNTER	\$\$ 133		
	MEAN	KMS OSU	AVE	SPACE.	1 / 2 1	ii dayast
PITCH, DEG		1.95 99				9.67
			2.56			
			0.57			
CG ACCEL, G	-0.03		0.25			
STERN ACCEL, 6	-0.03	0.13 70	0.22	-0.24	0 • 30	-0.30
RUN NO 431	11121 (4	CLIV 50 0 /	ranc ci	AB DESTE	COLT (42) 11	v o nec
MUN NO 431	V ELS O	CIII 20.0 A	1012 LT	AF DEFEE	.6115/ 10	0.0 050
	กบทบ	ER OF WAVE	ENCOUNTER	k\$ 138		
	MEAN	KMS 050	ΛVH	CKAGE	1/3 h	HIGHEST
PITCH, DEG		1.84 103				
	1 • 88	0.38 81	2.38	1 • 41	2.65	1.09
BOW ACCEL, G	-0.04		0.52			
UG AUCEL, G			0.25			
STERN ACCEL, G	-0.03	0.14 68	0.23	-0.26	0.34	-0.32
180					STATE TO STATE OF THE STATE OF	
RUN NO 416	VELO	CITY 30.0 K	1015 FL	AP DEFLE	10113N 2	2.5 DEG
	NUMU	ER OF WAVE	ENCOUNTER	xS 112		
	MEAN	KMS 050	AVI	CHAGE	173. :	HIGHESI
PITCH, DEG			12.13			
HEAVE, FT	3 • 17	0.70 61	4.02	2.44	4.71	2.00
BOW ACCEL, G	-0.01	0.69 120	1.13	-0.61	2.05	-1.01
UG ACCEL, G	-0.01	0.35 100	0.52	-0.42	0.02	-0.69
STERN ACCEL, G	-0.02	0•2४ ४1	U•36	-0.44	0• ১৬	-0.67
KUN NO 419	UELA	CITY 30.0 K	uali bi	AP DEELE	411111	5.0 016
NON NO TIV	V223	0111 00 0 M	1015		.011011	3.0 1520
	NUMB	ER OF WAVE	LN COUNTE:	15 164		
	MEAN	KMS OSC	AVI	EKAGE	1/3	HIGHESI
PITCH, DEG	7.70	2.59 73	10.46	4.40	12.42	2.35
HEAVE, FT	3.03	0 • 55 59		2.39		2.07
BOW ACCEL, G	-0.01		1.05		1.04	
CG ACCEL, G	0.00	0.32 100			U•77	
STERN ACCEL, G	-0.02	0.25 86	0.34	-0.37	0.54	-0.57

TABLE 12.3

WITHOUT CHINE FLAPS BOW RAMP EXTENDED LCG = 12.5 FT

RUN NØ 422	VELO	CITY 30.0 K	NØTS FLAF	DEFLECTION	7.5 DEG
	NOWPF	ER OF WAVE	ENCUUNTERS	146	
	HEAN	KMS 050	AVEKA	AGE 1/.	HIGHEST
PITCH, DEG	6 • 58	2.22 88	8.82	3.95 10.5	4 2.08
HEAVE, FT	2.86	0.47 62	3.46	2.32 3.93	2.02
BØW ACCEL. G	-0.01	0.62 131	1.02 -	0.56 1.7	4 -0.92
CG ACCEL, G	-0.01	0.30 102	0.43 -	0.41 0.65	-0.63
STERN ACCEL. G	-0.01	0.24 80	0.35	0.36 0.53	-0.53

TABLE 12.4

WITHOUT CHINE FLAPS BOW RAMP RETRACTED LCG = 12.5 FT

kUN NO 438	AET 0	CITY 15.0 KN	1015 FL	AP DEFLE	NG1102	0.0 DEG
	NUMB	ER OF WAVE E	EN C ØUN T E R	S 95		
	MEAN	KMS USC	AVE	KAGL	1/3	HIGHEST
PITCH, DEG	13.54	кМS 050 1.53 71	20.35	16.56	21.37	15.20
HEAVE, FT	11 - 31	11. 35 57	() • 76	- () - 1 5	1 - 1 1 1	- () - /:/
BOW ACCEL, G	-0.07	0.23 34	0.31	-0.38	0.51	-0.50
CG ACCEL, G	-0.05	0.11 39	0.17	-0.26	0.25	-0.33
BOW ACCEL, G CG ACCEL, G STERN ACCEL, G	-0.06	0•0४ 14	0.17	-0.24	0.22	-0.29
LIM MA ACO	VIII 2	21T PM - TE - (V - JA	1/3.71	A (2) 1512(E1)		0.050
kun NØ 439	VELO	CITY 15.0 KM	1012 FC	AP DEFLE	CIION	5.0 DEG
	NUMB	ER OF WAVE S	EN COUN 1 E R	5 96		
	MEAN	MMS 050	AVE	KAGE	1/3	HIGHESI
PITCH, DEG		1.64 72	17.37	13.26	18.54	12.07
HEAVE, FT	0.16	0.34 56	0.61	-0.31	0.55	-0.54
BOW ACCEL, G	-0.05	0.21 31	0.30	-0.34	0.46	-0.45
CG ACCEL G	-0.03	0.10 32	0.13	-0.24	0.24	-0.30
STERN ACCEL, G	-0.04	0.09 20	0 • 13 0 • 18	-0.23	0.24	-0.28
				·		
KUN NO 440	VELU	CITY 15.0 K	NUIS FL	AP DEFLE	ECTION 1	0.0 756
	NUMB	ER OF WAVE	EÑ C JUN 1 E K	S 94		
	HEAN	KMS OSC	AVE	KAGE	1/3	HIGHESI
PITCH, DEG	12.48	1.55 72	14.36	10.59	15.45	7.35
HEAVE, FT	-0.01	0.31 53	0 • 41	-0.44	0.64	-0.68
BOW ACCEL. G		0•1੪ 7 ੪	0.27	-0.31	0.39	-0.43
CG ACCEL, G		0.09 20	0 • 19	-0.20	0.23	-0.27
STERN ACCEL. G	-0.03	0.08 14	0.16	-0.23	0.19	-0.30
RUN NO 434	VELU	CITY 30.0 K	NOTS FL	AP DEFLE	CTION	2.5 DEG
	NUMB	ER OF WAVE I	ENCOUNTER	S 110		
DITO	MEAN	KMS 050				HIGHEST
PITCH, DEG	3.63		11.85			
HEAVE, FT		0.66 61	3.97			2.04
BOW ACCEL, G	-0.03	0.70 116				
CG ACCEL, G	0.00	0.35 102		-0.41		
STERN ACCEL, G	0.00	0.27 86	0.36	-0-43	0.59	-0.60

TABLE 12.5

WITHOUT CHINE FLAPS BOW RAMP RETRACTED LCG = 12.5 FT

RUN NO 437	VELO	CITY 30.0	KNØTS FL	AP DEFLE	ECTION	5.0 DEG
	NUMR	EK OF WAVE	ENCOUNTER	RS 33		
	MEAN	km5 050	AVE	EKAGE	1/3	HIGHEST
PITCH, DEG	7.75	2.69 24	10.81	4.23	12.66	2.29
HEAVE, FT	3.03	0.61 19	3∙ ४४	2.39	4.45	2.21
BOW ACCEL, G	-0.01	0.65 40	1 • 1 4	-0.55	1.37	-0.97
CG ACCEL. G	-0.01	0.34 32	0.50	-0.44	0.78	-0.71
STERN ACCEL, G	0.00	0.26 27	0.37	-0.39	0.61	-0.62
KUN NO 444	VELO	CITY 35.0	KNØTS FL	AP DEFLE	ECTI VN	5.0 DEG
	NUMB	ER OF WAVE	ENCOUNTE	RS 110		
	MEAN	RMS OSC	AVI	ERAGE	1/3	HIGHEST
PITCH, DEG	5.94	2.54 71	8.52	2.63	10.52	1 • 16
HEAVE, FT	3.07	0.59 55	- 3∙ ধ 3	2.40	4.38	2 • 13
BOW ACCEL, G	-0.01	0.74 127	1.28	-0.55	2.06	-1.03
CG ACCEL, G	0.01	0.38 104	0.56	-0.42	0.84	-0.73
STERN ACCEL, G	-0.01	0.32 82	0.40	-0.47	0.63	-0.74

TABLE 12.6

WITH CHINE FLAPS BOW RAMP EXTENDED LCG = 12.5 FT

RUN NO 470	VEL	OCITY 15	• 0 KN	ots f	LAP DEFLE	ECTI ON	7.5 DEG
CHINE FLAP DEFL	ECT LON	0.0 DEG	ろって	NUER OF	WAVE ENC	OUN TERS	96
	MEAN	RMS	ひちじ	AV	ERAGE	1/3	HI GHE ST
PITCH, DEG	16.37	2.10	77	18.81	13.59	20.04	11.97
HEAVE, FT	2.11	0 • 47	63	2.70	1.52	3.06	1.23
BOW ACCEL, G	-0.06	0.34	97		-0.48		-0.67
CG ACCEL, G	-0.06	0 • 17	74		-0.33		
STERN ACCEL, G	-0.04	0 • 1 1	36	0.19	-0.23	0.20	-0.29
RUN NO 471	VEI	activ 15	45. () .	iots F	TAP DEFE	CCTT box	7.5 OFG
NON 110 471	V L.	200111 10	10	10.0	D DE. C.	2011/7/1	, , 5 5 5 6
CHINE FLAP DEFL	ECTION	5.0 DEG	NUN	16EK OF	WAVE ENC	JUNIERS	92
	MEAN	KM 5	USC	AV	EKAGE	1/3	HIGHESI
PITCH, DEG	15.50	2.11			12.39		
HEAVE, FT	2.08	0.46	67		1.50		1.18
BOW ACCEL, G	- 0.05	0.33	95	0.50	-0.47	0.00	-0.67
CG ACCEL, G	-0.05	0.16	73	0.20	-0.32		-0.41
STERN ACCEL, G	-0.03	0.11	47	0.18	-0.22	0.25	-0.27
RUN NO 472	VEI	LOCITY 15	· U · K	1015 r	LAP DEFLE	ECTION	7.5 JEG
CHINE FLAP DEFL	ECTION	10.0 DEG	MU:	ABER OF	WAVE ENCO	JUNIERS	91
	MEAN	RMS	USC	AV	ERAGE	1/3	HIGHEST
PITCH, DEG	14.93	2.12	7 9	17.51	12.20	13.50	10-64
HEAVE, FI BOY ACCEL, G	a · 20	0.46	66	2.00	1 • 6 1	3.14	1.31
BOY ACCEL, G	-0.05	0.34	97	U • 4명	-0.47	0.79	-U.68
CG ACCEL, G	-0.05	0.17	71	0.20	-0.33	0.30	-U.44
STERN ACCEL, G	-0.03	0.12	44	0.20	-0.55	0.27	-0.27
หนุก กุฎ 501	VE	LUCITY 15	.0 Ki	d Siev	LAP DEFLI	-C110N	10.0 DEG
CHINE FLAP DEFL	ECTION	10.0 DEG	NU	ABEK OF	MAVE ENC	ΰUN1E;o	96
	MEAN	KM S	USC	/41	EKAGE	1/3	HIGHESI
PITCH, DEG		2.01	82	16.5)	11.71	17.77	9.97
HEAVE, FT	2.11	0.43	69	2.65	1.50	3.01	1.24
ook ACCEL, G	-0.05	0.33	93	0.48	-0.44	U• 33	-0.62
410 0 440 31				0			
CG ACCEL, G	-0.05	0.16	73	0.20		0.33	-0.40

TABLE 12.7

WITH CHINE FLAPS BOW RAMP EXTENDED LCG = 12.5 FT

kUN NØ 495	VELOCITY	15.0 K	NOTS FL	LAP DEFLE	CIION	7.5 DEG
CHINE FLAP DEFL	ECT10N 15.0 D	EG NU	MBER OF	WAVE ENCO	UNTERS	93
	MEAN N	MS 050	AVE	EKAGE	173	HIGHEST
PITCH, DEG	14.46 2.	12 85	16.81	11.90	18.15	10.03
HEAVE, FT	2.17 0.		2.75	1.59	3.10	
BOW ACCEL. G		34 99	0.50	-0.46		-0.64
CG ACCEL, G		17 74	0.21			-0.41
	-0.05 0.		0.19	-0.24	0.27	-
0.2 1.00327 0			,	-		
KUN NØ 483	VELOCITY	. 50•0 K	vots fi	LAP DEFLE	CTION	7.5 DEG
CHINE FLAP DEFL	ECTION 0.0 D	DEG NUM	MBEK OF	WAVE ENCO	UNIEKS	136
	MEAN).	345 (450)	ΔΜ	e etΔGE	173	H18H#51
PITCH, DEG	MEAN 10.68 2.	85 101	13.86	7.08	15.75	5.04
HEAVE, FT	3.13 0.	56 91	3.84	2.49	4.33	2.12
BOW ACCEL, G		56 143	0.99	-0.55		
CG ACCEL, G	-0.03 0.			-0.39		
	-0.03 0.			-0.30		
STERN HOUSE	0.00	17 00	0.20	0.00	0142	0.1.10
KUN NO 480	VELOCI (Y	20•0 K	vois fi	LAP DEFLE	CHION	7.5 DEG
CHINE FLAP DEFL	ECIION 5.0 E	DEG NU	ABER OF I	MAVE ENCO	UNTERS	1 39
	MEAN F	KMS USC	AVI	EKACE	173	HIGHESI
PITCH, DEG				6.07		
HEAVE, FT		54 91		2.43		
BOW ACCEL, G	-0.02 0.	56 147		-Û.55		
CG ACCEL, C		27 126	0.41	-0.36		
STERN ACCEL. G				-0.29		
KUN N9 477	VELUCITY	' 20.0 K	NOTS FI	LAP DEFLE	ZCTTD.	7.5 DEG
CHINE FLAP DEFL	ECTION 10.0 L	DEG NU	ABEK OF	WAVE ENCO	UNIERS	132
	MEAN F	KMS USC	AV	ERAGE	1/3	HIGHEST
PITCH, DEG	3 • 49 2 •					2.50
HEAVE, FT	3.03 0.			2.40		
BOW ACCEL, G	-0.03 0.			-0.56		
	-0.02 0.			-0.37		
	C. C. C. C.	C. F. L. L. C.		•		

TABLE 12.8

WITH CHINE FLAPS BOW RAMP EXTENDED LCG = 12.5 FT

RUN NO 494		VEL	JULTY 30)•U ×	NOTS F	LAP DEFLE	CC (1 UN	7.5 DEG
CHITAIR SI AC		PR - 4 612 - 2 - 3 - 4						
CHINE FLAP	DEFL	ECTION -	-5.0 DEG	NC	IMBER OF	WAVE ENCE	UNTERS	114
		MEAN	EMS	O SC	ΔΙ	/ERAGE	173	HIGHESI
PITCH,	DEG		2.63			1.65		
HEAVE		3.31				2.63		
BOW ACCEL.		-0.01				-0+62		
CG ACCEL.		0.00			0.58			-0.73
STERN ACCE			0.30	26		-0.43		
SIEM MODE	_, 0	0.01	0.00	7 13	0.45	0 4 40	0.07	0.00
RUN NO 486		VEL	MOTTY 30) • O ×	NOTS F	TAP DEFIL	T. L. T. CAN	7.5 086
11014 110 -150		VEL	200111 30	, ,			2011011	1.0 020
CHINE FLAP	DEFI	ECTION	O.O DEG	NE	MERK OF	LAVE ENT	11(0) TERS	112
OHITAE TEN	001	2011011	0.0 520		JATOLIN OF	WINVES ENTO	ZAT LENO	
		MEAN	RMS	050	А	/ERAGE	173	HIGHEST
PITCH,	DEG	4.45	2.20	83	6.78	1.51	8.24	-0.07
HEAVE,	FT	3.21	0.54	68	3.87	2.62	4.35	2.25
BOW ACCEL.	G	-0.02	0.68		1.20	-0.63	1.90	-0.99
CG ACCEL,		0.00	0.36	115		-0.44		
STERN ACCE	_					-0.39	_	
		.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	0.20			,	J	
KUN NO 488		VEL	DUITY 30	0.0	KNOTS F	FLAP DEFLE	LCT1UN	7.5 286
CHINE FLAP	DrFL	ECTION	5.0 DEG	NU	MBER OF	WAVE ENC	JUNTERS	112
· -								- '
		MEAN	RMS	ชรบ	A	VERAGE	1/3	HIGHEST
PITCH,	DEG	3.37				0.50		
HEAVE,		3.11				2.53		
BOW ACCEL.		-0.02	0.64			-0.60		
CG ACCEL,	G	-0.01	0.34	114	0.47	-0.44	0.72	-0.71

STERN ACCEL, 6 -0.01 0.28 95 0.36 -0.40 0.62 -0.66

TABLE 13

SEAKEEPING STATISTICS FOR CONFIGURATION S-5 SIGNIFICANT HEIGHT = 2.2 FT DISPLACEMENT = 55,000 LB

	WITHOUT	CHINE FLAPS	LCG = 12.5 F	т
RUN NØ 62	VELØ	CITY 9.6 K	NØTS FLAP DE	FLECTION 0.0 DEG
	NUMB	ER ØF WAVE	ENCØUNTERS 72	2
	MEAN			1/3 HIGHEST
PITCH, DEG			2.83 -1.8	
HEAVE, FT	-4.10	0.34 41	-3.66 -4.5	
BØW ACCEL, G	-0.04	0.25 49	0.16 -0.3	
		0.07 42	0.11 -0.1	
STERN ACCEL, G	0.01	0.09 42	0 • 15 - 0 • 1	.3 0.20 -0.18
RUN NØ 63	VEL Ø	CITY 9.9 K	NØTS FLAP DE	CFLECTION 0.0 DEG
	NUMB	ER ØF WAVE	ENCOUNTERS 70)
	MEAN	KMS ØSC	AVERAGE	1/3 HIGHEST
PITCH, DEG	1 • 47	1.76 41	3.75 -0.9	1 4.89 -2.04
HEAVE3 FT	-4.12	0.34 39	-3.67 -4.5	66 -3 43 -4 83
BOW ACCEL, G	-0.06	0.25 49	0.15 -0.3	35 0.23 -0.74
CG ACCEL, G	0.00	0.08 41	0.12 -0.1	2 0.18 -0.16
STERN ACCEL, G	0.00	0.09 43	0.14 -0.1	4 0.20 -0.19
RUN NØ 26			NØTS FLAP DE ENCØUNTERS 59	CFLECTION -6.0 DEG
		RMS ØSC		1/3 HIGHESI
PITCH, DEG	16.48	1.37 34	18 • 31 14 • 7	
HEAVE, FT	-2.97		-2.59 -3.0	
BØW ACCEL, G	-0.05	0.20 53		29 0.36 -0.44
CG ACCEL. G	-0.06	0.10 43	0.07 -0.2	
STERN ACCEL, G	-0.06	0.07 37	0.05 -0.	0.11 -0.22
RUN NØ 17	VELØ	CITY 14.9 K	NØTS FLAP DE	EFLECTION 0.0 DEG
	NUMB	ER ØF WAVE	ENCOUNTERS 58	\$
	MEAN	RMS ØSC	AVERAGE	
PITCH, DEG	11.96	1 • 40 36	13.76 10.2	
HEAVE, FT	-3.39	0.28 29	-3.01 -3.	
BØW ACCEL, G	-0.03	0.19 53	0.22 .0.8	
CG ACCEL. G	-0.02	0.09 41	0.10 -0.	
STERN ACCEL, G	-0.01	0.07 37	0 • 10 -0 •	12 0.15 -0.18
0.2				

TABLE 13.2

WITHOUT CHINE FLAPS LCG = 12.5 FT

121 N. A. G. O. O.	UE! 0	07.TV 1 0 1/1	1070 01	AD DEEL F	COTTON	0 0 020
RUN NØ 22	VELO	CITY 14.9 K	NOIS FL	AP DEFLE	CIION	O.O DEG
	NUMB	ER ØF WAVE I	ENCOUNTER	RS 55		
	MEAN	RMS ØSC	AVE	ERAGE	1/3	HIGHEST
PITCH, DEG	11.22	1.32 34	12.90	9 • 49	13.78	8.62
HEAVE, FT	-3.31	0.27 31	-2.97	-3.64	-2.80	-3.90
BOW ACCEL, G	-0.03	0.18 52	0.22	-0.26	0.34	-0.39
CG ACCEL, G	-0.02	0.09 41	0.10	-0.16	0.16	-0.21
STERN ACCEL, G	-0.03	0.08 39	0.07	-0.15	0.12	-0.20
DUN NA OA	ur) a	CITY 15 1 1/1	LOTC EL	AD DECLE	C.T.I.ON	0 0 050
RUN NØ 34	VELO	CITY 15.1 KM	1012 FL	AP DEFLE	LUITON	0.0 DEG
	NUMB	ER ØF WAVE I	ENCOUNTER	RS 55		
	MEAN	KMS ØSC	AVE	EKAGE	1/3	HIGHEST
PITCH, DEG	12.00	1 • 38 32	13.87		14-86	9.16
HEAVE, FT	-3.15	0.28 31	-2.80	-3.51	-2.57	
BOW ACCEL, G	0.01	0.19 55	0.25	-0.23	0 • 38	-0.37
CG ACCEL, G	-0.03	0.09 41	0.10	-0.17	0.16	-0.23
STERN ACCEL, G	-0.05	0.08 39	0.07	-0.16	0.12	-0.22
0.2	0100	0.00				•
RUN NØ 18	VEL 0	CITY 15.0 K	NØTS FL	AP DEFLE	ECTION	2.5 DEG
	NUMB	ER ØF WAVE I	ENCOUNTER	RS 59		
	MEAN	RMS ØSC	AVE	ERAGE	1/3	HIGHEST
PITCH, DEG	10.94	1.38 34		9.24	13.65	8 • 22
HEAVE, FT	-3.49	0.29 27	-3.10	-3.85	-2.87	-4.12
BOW ACCEL, G	-0.03	0.17 52	0.20	-0.25	0.33	-0.36
CG ACCEL, G	-0.02	0.08 41	0.10	-0.15	0.16	-0.21
STERN ACCEL, G	0.00	0.07 37	0.11	-0.11	0.15	-0.16
0.2	0.00		• • • •	• • •	01.0	
RUN NØ 23	VEL0	CITY 15.1 K	NØTS FL	AP DEFLE	CTION	2.5 DEG
	NUMB	ER ØF WAVE	ENCOUNTER	R\$ 55		
	MEAN	KMS ØSC	ΔυΕ	ERAGE	1/3	HIGHEST
PITCH, DEG	9 • 30	1.35 34	10.98	7 • 58	11.89	6.72
HEAVE, FT	-3.36	0.28 30	-2.99		-2.81	
BOW ACCEL, G	-0.02	0.18 50	0.20	-0.25	0.31	
CG ACCEL, G	-0.02	0.09 39	0.10	-0.23	0.31	-0.23
STERN ACCEL, G	-0.02	0.09 39	0.08	-0.14	0.13	-0.20
DIEMY HOUELD O	0.03	0.01 31	0.00	0.1.4	0.15	0.20

TABLE 13.3

WITHOUT CHINE FLAPS LCG = 12.5 FT

RUN NØ 24	VEL 0	CITY 15.1 KN	IOTS FL	AP DEFLE	CTION	5.0 DEG
	NUMB	ER ØF WAVE E	CNCOUNTER	S 58		
	MEAN	RMS ØSC	AVE	RAGE		
PITCH, DEG	6.87	1.28 29	8.56	5.15	9 • 41	4.07
HEAVE, FT	-3.62	0.27 26	-3.27			-4.20
BOW ACCEL, G	-0.0%	0.15 47	0-19	-0.21	0.29	-0.31
CG ACCEL, G	-0.02	0.07 38	0.09	-0.13	0.14	-0.19
STERN ACCEL, G	-0.01	0.07 32	0.09	-0.12	0.13	-0-18
RUN NØ 61	VEL Ø	CITY 50.0 KV	ØTS FL	AP DEFLE	CTI ØN	0.0 DEG
	NUMB	ER ØF WAVE E	ENCOUNTER	S 49		
	MEAN	RMS ØSC	AVE	RAGE	1/3	HI GHE ST
PITCH. DEG	15.35	1.66 30	17.31			11.73
HEAVE, FT	-1.08	0.37 28	-0.63	-1.55	-0.35	-1.78
BOW ACCEL. G	-0.03	0.36 56	0.43	-0.34	0.83	
CG ACCEL, G	-0.02	0.18 45	0.20	-0.23	0.35	
STERN ACCEL, G	-0.03	0.12 35	0.13	-0.17		-0.23
J.D 1.00000	0.00	0.12	0.0		J • L •	0.20
RUN NØ 60	VEL0	CITY 20.0 KM	IØTS FL	AP DEFLE	ECTI ØN	2.5 DEG
RUN NØ 60		CITY 20.0 KN			ECTI ØN	2.5 DEG
RUN NØ 60			ENCØUNTER			2.5 DEG
RUN NØ 60 PITCH, DEG	NUMB	ER OF WAVE E	ENCØUNTER	S 53		
	NUMB MEAN	ER ØF WAVE E	ENCØUNTER AVE	S 53	1/3	HI GHE ST
PITCH, DEG	NUMB MEAN 13•72	ER ØF WAVE E RMS ØSC 1•59 30	ENCOUNTER AVE 15•64	S 53 RAGE 11-44	1/3 16•55	HI GHE ST 10•16 -1•89
PITCH, DEG HEAVE, FT	NUMB MEAN 13.72 -1.21	ER ØF WAVE E RMS ØSC 1•59 30 0•35 29	AVE 15•64 -0•79	RAGE 11.44 -1.64	1/3 16•55 -0•54	HI GHE ST 10•16 -1•89
PITCH, DEG HEAVE, FT BOW ACCEL, G	NUMB MEAN 13.72 -1.21 0.00	ER ØF WAVE E RMS ØSC 1•59 30 0•35 29 0•34 55	AVE 15.64 -0.79 0.44	RAGE 11.44 -1.64 -0.33	1/3 16•55 -0•54 0•81	HI GHE ST 10•16 -1•89 -0•55
PITCH, DEG HEAVE, FT BOW ACCEL, G CG ACCEL, G	NUMB MEAN 13.72 -1.21 0.00 -0.03	RMS ØSC 1.59 30 0.35 29 0.34 55 0.17 45	AVE 15.64 -0.79 0.44 0.19	RAGE 11.44 -1.64 -0.33 -0.24	1/3 16.55 -0.54 0.81 0.32	HI GHE ST 10.16 -1.89 -0.55 -0.37
PITCH, DEG HEAVE, FT BOW ACCEL, G CG ACCEL, G	NUMB MEAN 13.72 -1.21 0.00 -0.03 -0.02	RMS ØSC 1.59 30 0.35 29 0.34 55 0.17 45	AVE 15.64 -0.79 0.44 0.19 0.14	RAGE 11.44 -1.64 -0.33 -0.24 -C.17	1/3 16.55 -0.54 0.81 0.32 0.22	HI GHE ST 10.16 -1.89 -0.55 -0.37 -0.24
PITCH, DEG HEAVE, FT BOW ACCEL, G CG ACCEL, G STERN ACCEL, G	NUMB MEAN 13.72 -1.21 0.00 -0.03 -0.02	ER ØF WAVE E RMS ØSC 1.59 30 0.35 29 0.34 55 0.17 45 0.12 37	AVE 15.64 -0.79 0.44 0.19 0.14	RAGE 11.44 -1.64 -0.33 -0.24 -C.17	1/3 16.55 -0.54 0.81 0.32 0.22	HI GHE ST 10.16 -1.89 -0.55 -0.37 -0.24
PITCH, DEG HEAVE, FT BOW ACCEL, G CG ACCEL, G STERN ACCEL, G	NUMB MEAN 13.72 -1.21 0.00 -0.03 -0.02	RMS ØSC 1.59 30 0.35 29 0.34 55 0.17 45 0.12 37 CITY 19.8 KM	AVE 15.64 -0.79 0.44 0.19 0.14 NØTS FL	RAGE 11.44 -1.64 -0.33 -0.24 -C.17	1/3 16.55 -0.54 0.81 0.32 0.22	HI GHE ST 10.16 -1.89 -0.55 -0.37 -0.24
PITCH, DEG HEAVE, FT BOW ACCEL, G CG ACCEL, G STERN ACCEL, G	NUMB MEAN 13.72 -1.21 0.00 -0.03 -0.02 VEL 0 NUMB	ER ØF WAVE E RMS ØSC 1.59 30 0.35 29 0.34 55 0.17 45 0.12 37 CITY 19.8 KN ER ØF WA/E E	AVE 15.64 -0.79 0.44 0.19 0.14 NØTS FL	RAGE 11.44 -1.64 -0.33 -0.24 -C.17 AP DEFLE	1/3 16.55 -0.54 0.81 0.32 0.22	HIGHEST 10.16 -1.89 -0.55 -0.37 -0.24 5.0 DEG
PITCH, DEG HEAVE, FT BØW ACCEL, G CG ACCEL, G STERN ACCEL, G	NUMB MEAN 13.72 -1.21 0.00 -0.03 -0.02 VELØ NUMB	ER ØF WAVE E RMS ØSC 1.59 30 0.35 29 0.34 55 0.17 45 0.12 37 CITY 19.8 KN ER ØF WA/E E RMS ØSC	AVE 15.64 -0.79 0.44 0.19 0.14 NOTS FL ENCOUNTER AVE	RAGE 11.44 -1.64 -0.33 -0.24 -C.17 AP DEFLE	1/3 16.55 -0.54 0.81 0.32 0.22 ECTIØN	HIGHEST 10.16 -1.89 -0.55 -0.37 -0.24 5.0 DEG HIGHEST 9.39
PITCH, DEG HEAVE, FT BØW ACCEL, G CG ACCEL, G STERN ACCEL, G RUN NØ 59 PITCH, DEG	NUMB MEAN 13.72 -1.21 0.00 -0.03 -0.02 VELØ NUMB MEAN 12.33	ER ØF WAVE E RMS ØSC 1.59 30 0.35 29 0.34 55 0.17 45 0.12 37 CITY 19.8 KN ER ØF WA/E E RMS ØSC 1.37 31	AVE 15.64 -0.79 0.44 0.19 0.14 NØTS FL ENCØUNTER AVE 14.02	S 53 RAGE 11.44 -1.64 -0.33 -0.24 -C.17 AP DEFLE S 50 RAGE 10.38	1/3 16.55 -0.54 0.81 0.32 0.22 ECTIØN	HIGHEST 10.16 -1.89 -0.55 -0.37 -0.24 5.0 DEG HIGHEST 9.39 -2.09
PITCH, DEG HEAVE, FT BØW ACCEL, G CG ACCEL, G STERN ACCEL, G RUN NØ 59 PITCH, DEG HEAVE, FT	NUMB MEAN 13.72 -1.21 0.00 -0.03 -0.02 VELØ NUMB MEAN 12.33 -1.48	ER ØF WAVE E RMS ØSC 1.59 30 0.35 29 0.34 55 0.17 45 0.12 37 CITY 19.8 KN ER ØF WA/E E RMS ØSC 1.37 31 0.30 29	AVE 15.64 -0.79 0.44 0.19 0.14 NØTS FL ENCOUNTER AVE 14.02 -1.11	S 53 RAGE 11.44 -1.64 -0.33 -0.24 -C.17 AP DEFLE S 50 RAGE 10.38 -1.85	1/3 16.55 -0.54 0.81 0.32 0.22 ECTIØN	HIGHEST 10.16 -1.89 -0.55 -0.37 -0.24 5.0 DEG HIGHEST 9.39 -2.09 -0.52
PITCH, DEG HEAVE, FT BØW ACCEL, G CG ACCEL, G STERN ACCEL, G RUN NØ 59 PITCH, DEG HEAVE, FT BØW ACCEL, G	NUMB MEAN 13.72 -1.21 0.00 -0.03 -0.02 VELØ NUMB MEAN 12.33 -1.48 -0.03	ER ØF WAVE E RMS ØSC 1.59 30 0.35 29 0.34 55 0.17 45 0.12 37 CITY 19.8 KN ER ØF WA/E E RMS ØSC 1.37 31 0.30 29 0.30 52	AVE 15.64 -0.79 0.44 0.19 0.14 NOTS FL ENCOUNTER AVE 14.02 -1.11 0.38	RAGE 11.44 -1.64 -0.33 -0.24 -C.17 AP DEFLE S 50 RAGE 10.38 -1.85 -0.32	1/3 16.55 -0.54 0.81 0.32 0.22 ECTION 1/3 14.84 -0.93 0.69	HIGHEST 10.16 -1.89 -0.55 -0.37 -0.24 5.0 DEG HIGHEST 9.39 -2.09 -0.52 -0.33

TABLE 13.4

RUN NØ 56	VELØ	CITY 25.0 KI	OTS FLA	P DEFLE	CCTION	0.0 DEG
	NUMB	ER ØF WAVE E	COUNTERS	50		
	MEAN	RMS ØSC	AVER	AGE	1/3	HI GHE ST
PITCH, DEG	12.09	2.12 25	14.55	8.98	15.82	7.61
			0.43	-0.64	0.78	-0.95
	-0.02	0 • 47 49	0.62	-0.42	1.17	-0.72
CG ACCEL. G	-0.01	0.23 45	0.27	-0.25	0.47	-0.46
STERN ACCEL, G	-0.02	0.15 35	0.16	-0.23	0.30	-0.34
RUN NØ 57	VF1 0	CITY 25.0 KN	IOTS FLA	P DEFL	CTIAN	2.5 DEG
NOW NO 31	VCLU	OIII 2500 KI	10.5		2011011	243 060
	NUMB	ER ØF WAVE E	CNCOUNTERS	53		
	MEAN	RMS ØSC	AVER	AGE	1/3	HIGHEST
PITCH, DEG			12.71			
			0.16			
			0.69	-0.49	1.16	-0.74
CG ACCEL. G	-0.01	0.24 42	0.29	-0.29	0.47	-0.46
STERN ACCEL. G			0.17	-0.21	0.33	-0.32
				D D. B.		
RUN NØ 58	VEL	ICITY 25.0 KM	NOTS FLA	IP DEFL	ECTION	5.0 DEG
	NUMB	EK ØF WAVE	ENCOUNTERS	5 1		
	MEAN	RMS ØSC	AVER	AGE	1/3	HIGHEST
PITCH, DEG			11.43			
			-0.03			
			0.64			
			0.28			
					0.36	
RUN NØ 35	VEL 0	CITY 30.2 KM	NØTS FLA	AP DEFLI	ECTION	0.0 DEG
	NUME	BER OF WAVE S	ENCOUNTERS	45		
	MEAN	RMS ØSC	AVEF	RAGE	1/3	HIGHEST
PITCH, DEG						
HEAVE, FT		0.49 21	0.61		0.86	
BOW ACCEL, G	0.01	0.66 42	0.93	-0.58	1.74	-1.13
CG ACCEL, G STERN ACCEL, G	-0.01 -0.03	0·33 40 0·24 44	0 • 39 0 • 16	-0.34	0.71	-0.60

TABLE 13.5

WITHOUT	CHINE	FLAPS	LCG =	12.5 F	Т
---------	-------	-------	-------	--------	---

RUN NØ 38	VFI.0	CITY 30.0 KN	JOTS FI	.AP DEFLE	CTION	O.O DEG
71011 110 00	¥220	011. 00.0 m		22. 3.		0.0 550
	NUMB	ER OF WAVE	ENCOUNTER	RS 45		
	MEAN	RMS ØSC	AVE	RAGE	1/3	HIGHEST
PITCH- DEG		2.54 25		5.87		
HEAVE, FT			0.60	-0.57	0.83	-0.97
BØW ACCEL. G		0.66 45		-0.58		
CG ACCEL. G	-0.02	0.33 43	0.39	-0.29	0.64	-0.63
STERN ACCEL, G	-0.03	0.23 44	0.14	-0-31	0 • 38	-0.47
RUN NØ 36	VEL 0	CITY 30.1 KM	IOTS FL	AP DEFLE	CTION	2.5 DEG
	•					
	NUMB	ER OF WAVE	ENCOUNTER	RS 46		
	MEAN	RMS ØSC	ΛVE	PAGE	1/3	UI CUT ST
PITCH, DEG		2.25 23	AVE 10 • 50	4.71	11.95	3-00
	-0.20		0.41	-0.77	0-76	- 1- 10
HEAVE, FT BOW ACCEL, G	0.20		0.82			
CG ACCEL, G			0.36			
STERN ACCEL, G			0.19			
SIERN HUUELI G	-0.02	0.21 33	0.19	-0.30	0 • 3 9	-0.43
RUN NØ 37	VEL 0	CITY 30.0 KM	ØTS FL	AP DEFLE	ECTION	5.0 DEG
	NUMB	ER OF WAVE	ENCOUNTER	RS 50		
	MEAN	RMS ØSC	AVE	ERAGE	1/3	HIGHEST
PITCH, DEG	_		8.83			
			0.13			
			0.69			
		0.27 44	0.34			
STERN ACCEL. G		0.21 44	0.04	- 0 • 2 0	0.00	-0.54

TABLE 13.6

WITH HORIZONTAL CHINE FLAPS LCG = 12.5 F

RUN NØ 27	VEL	OCITY 15	5•1 K	NØTS F	FLAP DEFL	ECTI ØN	0.0 DEG
CHINE FLAP DEFL	ECTION	O.O DEG	NL	IMBER ØF	WAVE ENC	ØUNTERS	57
	MEAN	RMS	ØSC	A	VERAGE	1/3	HIGHEST
PITCH, DEG	16.11	1.65	36	18.25	14.00	19.26	12.66
HEAVE, FT	-1.15	0 • 38	34	-0.68		-0.45	
BØW ACCEL. G	-0.05	0.28	59	0.32		0.57	
CG ACCEL, G	-0.04	0.14		0.15		0.24	
STERN ACCEL, G		0.14	40	0.13		0.17	
SIEMW ACCELY G	0.03	0.10	40	0.09	-9•10	0.17	-0+24
RUN NØ 28	VEL	OCITY IS	5•0 K	NØTS F	FLAP DEFL	ECTIØN	2.5 DEG
CHINE FLAP DEFL	ECT LON	0 0 050	N11	IMDED AF	MAUE ENC	MINTEUC	ευ
CHINE PLAP DEFL							-
	MEAN	RMS		Αl	/ERAGE	1/3	HIGHEST
PITCH, DEG	13.24	1 • 60			11.10		
HEAVE, FT	-1 • 46	0 • 38	32	-0.99			-2.26
BOW ACCEL, G	-0.03	0.26		0.32	-0.31		
CG ACCEL, G	-0.04	0.13	49	0.13	-0.22	0.22	-0.32
STERN ACCEL, G	-0.03	0.10	38	0.12	-0.18	0.19	-0.23
RUN NØ 29	∨ E L	OCITY 1	5•1 K	NØTS F	FLAP DEFL	ECTION	5.0 DEG
CHINE FLAP DEFL	ECTION	0.0 DEG	NL	MBER ØF	WAVE ENC	ØUNTERS	52
	MEAN	RMS	øsc	A	VERAGE	1/3	HIGHEST
PITCH, DEG	10.63	1 • 50	36		8 • 68		
HEAVE, FT	-1.85	0.34			-2.24	-1.13	
BOW ACCEL, G	-0.02	0.24		0.28		0 • 46	
CG ACCEL, G	-0.03	0.12	46	0.13		0.20	
STERN ACCIL, G	-0.03	0.10	42	0.10		0.18	-0.25
STERN HOULE G	0.00	0.10	46	0.10	-0.10	0.10	-0.23
RUN NØ 30	VEL	LØCITY 1	5•1 H	NØTS F	FLAP DEFL	ECTI ON	0.0 DEG
CHINE FLAP DEFL	ECTION	10.0 DEG	NL	IMBER ØF	WAVE ENC	ØUNTERS	58
	MEAN	RMS	ØSC	A	VERAGE	1/3	HIGHEST
PITCH, DEG		1.64	37	16.81			11.36
HEAVE, FT	-1.13	0.37	34		-1.58		-1.89
BOW ACCEL, G	-0.04	0 • 28	59	0.34		0.57	
CG ACCEL. G	-0.06	0.14			-0.26		
STERN ACCEL, G	-0.05				-0.17		

TABLE 13.7

WITH HORIZONTAL CHINE FLAPS LCG = 12.5 FT

RUN NØ 31	VEL	OCITY 1	5•1 K	NØTS F	FLAP DEFL	ECTI ØN	2.5 DEG
CHINE FLAP DEFL	ECTION 1	10.0 DEG	NL	MBER ØF	WAVE ENC	ØUNT ERS	56
	MEAN	RMS	ØSC	ΑV	/ERAGE	1/3	HI GHEST
PITCH, DEG	11.76	1.61	36	13.83	9.77	15.09	8.67
HEAVE, FT		0.35			-1.88		-2.16
BØW ACCEL, G		0.24			-0.30		
		0.13			-0.21		
STERN ACCEL. G							
3.2	0.00	0.0	•	0.1.	0.17	0-17	0.20
RUN NØ 67	VEL	OCITY 2	0•1 K	NØTS F	FLAP DEFL	ECTI ØN	0.0 DEG
CHINE FLAP DEFL	ECTION	0.0 050	NII	MDED GE	MANE ENC	MINITERS	C 1
CRINE PLAP DEFL		_					
		RMS	ØSC		/ERAGE		
PITCH, DEG		3.26			11.34		
HEAVE, FT		0.71			-1.71		
		0.77			-0.63		
CG ACCEL, G	0.00	0 • 45	54	0.52	-0.43	0.94	-0.82
STERN ACCEL, G	-0.C5	0.29	5 3	0.26	-0.39	0.61	-0.62
RUN NØ 68	VFI	actry 20	0.0 K	NOTS F	TIAP DEFI	FCTION	2.5 DEG
	¥ 2.	2001 5				2011011	2.0 020
CHINE FLAP DEFL	ECTION.	0.0 DEG	NL	MBER OF	WAVE ENC	ØUNTERS	51
	MFAN	RMS	øsc.	A	/ERAGE	1/3	HIGHEST
PITCH, DEG		2.39	31		ಕ•00		
		0 • 48			-0.51		
BOW ACCEL, G		0.51			-0.47		
CG ACCEL, G		0.26			-0-29		
STERN ACCEL, G					-0.21		
STERRY HOULES G	0.02	0.13	77	0.10	0.21	0.30	0.01
RUN NØ 69	VEL	LØCITY 2	0•1 H	NØTS F	FLAP DEFL	ECTION	5.0 DEG
CHINE FLAP DEFL	ECTION	0.0 DEG	NU	MBER ØF	WAVE ENC	OUNTERS	51
	MEAN	RMS	ØSC	Αl	/EKAGE	1/3	HI GHEST
PITCH, DEG					7 • 38		
HEAVE, FT							
BOW ACCEL, G					-0.40		
CG ACCEL, G		0.25			-0.28		
STERN ACCEL, G							_
	3.05	3-13		J	J - L 1	3 - 00	3.00

TABLE 13.8

WITH HORIZONTAL CHINE FLAPS LCG = 12.5 FT

RUN N'0 50	VELØCI TY	30.1 KNØ	TS FL	AP DEFLE	CTIØN -	6.0 DEG
CHINE FLAP DEFLE	CTION 0.0 D	EG NUME	ER ØF W	AVE ENCØ	UNTERS	51
	MEAN F		AVE	RAGE	1/3	HIGHEST
	9.29 5.			1.87		
	0.97 1.			-0.41		
BOW ACCEL, G	-0.01 1.			-0.61		
				-0.43		
STERN ACCEL, G	-0.02 0.	50 52	0 • 40	-0.61	0.97	-1.06
RUN NØ 39	VELOCITY	′ 30•0 KNØ	TS FL	AP DEFLE	CTIUN	0.0 DEG
CHINE FLAP DEFLE	CTION 0.0 D	DEG NUME	EK ØF W	AVE ENCØ	UNTERS	51
	MEAN H	RMS ØSC	AVE	RAGE	1/3	HIGHEST
PITCH, DEG	6.56 2.			2.77		
HEAVE, FT	0.28 0.	59 24	1.06	-0.37	1.44	-0.90
BØW ACCEL, G	0.02 0.	84 42	1.34	-0.75	2.24	-1.64
CG ACCEL, G	-0.01 0.	44 50	0.57	-0.30	0.95	-0.79
STERN ACCEL, G	-0.01 0.	33 53	0.27	-0.35	0.57	-0.67
KUN NØ 49	VEL ØCI TY	30 - 1 KNE	TS FL	AP DEFLE	CTIØN	0.0 DEG
CHINE FLAP DEFLE	CTION 0.0 E	DEG NUME	ER OF W	AVE ENCO	UNTERS	47
	MEAN H	RMS ØSC	AVE	RAGE	1/3	HIGHEST
PITCH, DEG				2.54		
				-0.44		
		-		-0.55		
	0.00 0.		0.69	-0.32	1.22	-0.75
STERN ACCEL, G	-0.02 0.			-0-38		
RUN NØ 40						0 5 056
	VELOCITY	30.0 KN	ITS FL	AP DEFLE	CTIØN	2.3 DEG
CHINE FLAP DEFLE						
CHINE FLAP DEFLE	CTIØN 0.0 [DEG NUME	BER ØF W	AVE ENCØ RAGE	UNTERS	47 HIGHEST
	CTIØN 0.0 [DEG NUME	BER ØF W	AVE ENCØ RAGE 1.78	UNTERS 1/3 10•57	47 HI GHE ST 0•59
PITCH: DEG HEAVE: FT	CTIØN 0.0 I MEAN 1	DEG NUME RMS ØSC 66 21 61 20	BER OF W AVE 9.30 1.04	AVE ENCØ RAGE 1.78 -0.63	1/3 10.57 1.42	47 HIGHEST 0.59 -0.96
PITCH, DEG HEAVE, FT BOW ACCEL, G	MEAN 2001 10 10 10 10 10 10 10 10 10 10 10 10	DEG NUME RMS ØSC 666 21 661 20 673 46	AVE 9.30 1.04 1.22	AVE ENCØ RAGE 1.78 -0.63 -0.49	1/3 10.57 1.42 2.04	47 HIGHEST 0.59 -0.96 -1.10
PITCH, DEG HEAVE, FT BØW ACCEL, G CG ACCEL, G	MEAN 5.78 2.0.14 0.00 0.00 0.00 0.00 0.00	DEG NUME RMS ØSC 666 21 661 20 673 46	AVE 9.30 1.04 1.22 0.55	AVE ENCØ RAGE 1.78 -0.63 -0.49 -0.24	1/3 10.57 1.42 2.04 0.90	47 HIGHEST 0.59 -0.96 -1.10 -0.71
PITCH, DEG HEAVE, FT BOW ACCEL, G	MEAN 5.78 2.0.14 0.00 0.00 0.00 0.00 0.00	DEG NUME RMS ØSC 666 21 661 20 673 46	AVE 9.30 1.04 1.22 0.55	AVE ENCØ RAGE 1.78 -0.63 -0.49	1/3 10.57 1.42 2.04 0.90	47 HIGHEST 0.59 -0.96 -1.10 -0.71

TABLE 13.9

WITH HORIZONTAL CHINE FLAPS LCG = 12.5 FT

RUN NØ 41		VEL	OCITY 30	0•0 K	NØTS F	TLAP DEFL	ECTION	5.0 DEG
CHINE FLAP	DEFLE	ECTION	0.0 DEG	NL	MBER ØF	WAVE ENC	OUNTERS	48
		MEAN	RMS	ØSC	A	ERAGE	1/3	HIGHESI
PITCH,	DEG	4.80	2.03	23	7.28	1.99	8 • 40	0 • 40
HEAVE,	FT	0.01	0 • 49	21	0.65	-0.58	1.06	-0.92
BOW ACCEL.	G	0.02	0.63	54	1.00	-0.33	i•67	-0.89
CG ACCEL,	G	-0.02	0.34	53	0 • 45	-0.26	0.74	-0.63
STERN ACCE	G و۔	-0.01	0.23	48	0.22	-0.29	0.46	-0.47

TABLE 13.10

WITHOUT CHINE FLAPS	LCG = 13.5	FT
---------------------	------------	----

RUN NØ 54	VEL Ø	CITY 30.1 KN	OTS FLAP DE	FLECTION C	0.0 DEG
	NUMBE	ER ØF WAVE E	NCØUNTERS 45		
HEAVE, FT	-0.01	0.54 47 0.27 43	AVERAGE 11.48 6.0 0.56 -0.5 0.74 -0.4 0.33 -0.2 0.16 -0.2	6 0.93 1 1.35 7 0.56	4• 46 - 0• 89
W	ITH HORIZON	NTAL CHINE FLAI	PS LCG = 13	.5 FT	
DIM NG 50		01.TV 00 1 1/1	GT (mi comtoni o	2 0 020
RUN NØ 52			OTS FLAP DE		C.C DEG
RUN NØ 52			ØTS FLAP DE NCØUNTERS 47		C•C DEG
	NUMBI MEAN	ER ØF WAVE E	NCØUNTERS 47 Average	1/3 }	HI GHEST
PITCH, DEG	NUMBI MEAN 6•50	ER ØF WAVE E RMS ØSC 2.64 20	NCØUNTERS 47 AVERAGE 9•82 2•4	1/3 F 6 11•28	HIGHEST 1•31
PITCH, DEG HEAVE, FT	NUMBI MEAN 6 • 50 0 • 40	ER ØF WAVE E RMS ØSC 2.64 20 0.64 21	NCØUNTERS 47 AVERAGE 9.82 2.4 1.24 -0.3	1/3 } 6 11•28 2 1•86	HIGHEST 1•31 -0•66
PITCH, DEG	NUMBI MEAN 6•50	ER ØF WAVE E RMS ØSC 2.64 20 0.64 21 0.68 47	AVERAGE 9.82 2.4 1.24 -0.3 1.04 -0.3	1/3 F 6 11.28 2 1.86 9 1.85	1.31 -0.66 -0.97
PITCH, DEG HEAVE, FT BØW ACCEL, G	NUMBI MEAN 6 • 50 0 • 40 - 0 • 01	ER ØF WAVE E RMS ØSC 2.64 20 0.64 21	AVERAGE 9.82 2.4 1.24 -0.3 1.04 -0.3	1/3 F 6 11.28 2 1.86 9 1.85 8 0.90	HIGHEST 1.31 -0.66 -0.97 -0.67
PITCH, DEG HEAVE, FT BØW ACCEL, G CG ACCEL, G	NUMBI MEAN 6.50 0.40 -0.01 0.00	ER ØF WAVE E RMS ØSC 2.64 20 0.64 21 0.68 47 0.37 47 0.28 50	AVERAGE 9.82 2.4 1.24 -0.3 1.04 -0.3 0.52 -0.2	1/3 F 6 11.28 2 1.86 9 1.85 8 0.90 2 0.61	1.31 -0.66 -0.97 -0.67 -0.58
PITCH, DEG HEAVE, FT BØW ACCEL, G CG ACCEL, G STERN ACCEL, G	NUMBI MEAN 6.50 0.40 -0.01 0.00 0.00	ER ØF WAVE E KMS ØSC 2.64 20 0.64 21 0.68 47 0.37 47 0.28 50 CITY 30.1 KN	AVERAGE 9.82 2.4 1.24 -0.3 1.04 -0.3 0.52 -0.2 0.31 -0.3	1/3 F 6 11.28 2 1.86 9 1.85 8 0.90 2 0.61	1.31 -0.66 -0.97 -0.67 -0.58
PITCH, DEG HEAVE, FT BØW ACCEL, G CG ACCEL, G STERN ACCEL, G	NUMBI MEAN 6 · 50 0 · 40 - 0 · 01 0 · 00 0 · 00 VEL Ø	ER ØF WAVE E KMS ØSC 2.64 20 0.64 21 0.68 47 0.37 47 0.28 50 CITY 30.1 KN ER ØF WAVE E	AVERAGE 9.82 2.4 1.24 -0.3 1.04 -0.3 0.52 -0.2 0.31 -0.3 ØTS FLAP DE	1/3 F 6 11.28 2 1.86 9 1.85 8 0.90 2 0.61 FLECTION (1.31 -0.66 -0.97 -0.67 -0.58
PITCH, DEG HEAVE, FT BØW ACCEL, G CG ACCEL, G STERN ACCEL, G	NUMB! MEAN 6.50 0.40 -0.01 0.00 0.00 VELØ! NUMB!	ER ØF WAVE E RMS ØSC 2.64 20 0.64 21 0.68 47 0.37 47 0.28 50 CITY 30.1 KN ER ØF WAVE E RMS ØSC	AVERAGE 9.82 2.4 1.24 -0.3 1.04 -0.3 0.52 -0.2 0.31 -0.3 ØTS FLAP DE NCØUNTERS 47	1/3 F 6 11.28 2 1.86 9 1.85 8 0.90 2 0.61 FLECTION (HIGHEST 1.31 -0.66 -0.97 -0.67 -0.58 D.O DEG
PITCH, DEG HEAVE, FT BØW ACCEL, G CG ACCEL, G STERN ACCEL, G	NUMBI MEAN 6 · 50 0 · 40 - 0 · 01 0 · 00 0 · 00 VEL Ø	ER ØF WAVE E KMS ØSC 2.64 20 0.64 21 0.68 47 0.37 47 0.28 50 CITY 30.1 KN ER ØF WAVE E	AVERAGE 9.82 2.4 1.24 -0.3 1.04 -0.3 0.52 -0.2 0.31 -0.3 ØTS FLAP DE	1/3 F 6 11.28 2 1.66 9 1.85 8 0.90 2 0.61 FLECTION 0	HIGHEST 1.31 -0.66 -0.97 -0.67 -0.58 0.0 DEG
PITCH, DEG HEAVE, FT BØW ACCEL, G CG ACCEL, G STERN ACCEL, G RUN NØ 53	NUMBI MEAN 6.50 0.40 -0.01 0.00 0.00 VELØF NUMBI MEAN 6.48	ER ØF WAVE E RMS ØSC 2.64 20 0.64 21 0.68 47 0.37 47 0.28 50 CITY 30.1 KN ER ØF WAVE E RMS ØSC 2.34 22	AVERAGE 9.82 2.4 1.24 -0.3 1.04 -0.3 0.52 -0.2 0.31 -0.3 ØTS FLAP DE NCØUNTERS 47 AVERAGE 9.28 3.0	1/3 F 6 11.28 2 1.86 9 1.85 8 0.90 2 0.61 FLECTION 0	HIGHEST 1.31 -0.66 -0.97 -0.67 -0.58 D.O DEG HIGHEST 1.66 -0.63
PITCH, DEG HEAVE, FT BØW ACCEL, G CG ACCEL, G STERN ACCEL, G RUN NØ 53	NUMBI MEAN 6.50 0.40 -0.01 0.00 0.00 VEL Ø NUMBI MEAN 6.48 0.39	ER ØF WAVE E RMS ØSC 2.64 20 0.64 21 0.68 47 0.37 47 0.28 50 CITY 30.1 KN ER ØF WAVE E RMS ØSC 2.34 22 0.55 22	AVERAGE 9.82 2.4 1.24 -0.3 1.04 -0.3 0.52 -0.2 0.31 -0.3 ØTS FLAP DE NCOUNTERS 47 AVERAGE 9.28 3.0 1.11 -0.2	1/3 F 6 11.28 2 1.86 9 1.85 8 0.90 2 0.61 FLECTION 0 1/3 F 8 10.76 3 1.58 1 1.93 3 0.94	HIGHEST 1.31 -0.66 -0.97 -0.67 -0.58 D.O DEG HIGHEST 1.66 -0.63 -0.96

TABLE 13.11

WITH 9	FT	TRANSOM	FLAP	LCG = 12.5	FT
--------	----	---------	------	------------	----

RUN NØ 65	VEL00	CITY 15.0 K	NØTS FL	AP DEFLE	ECTIÓN -6.0 DE	G
	NUMBE	ER OF WAVE	ENCOUNTE	RS 56		
	MEAN	RMS ØSC	AVE	ERAGE	1/3 HIGHES	T
PITCH, DEG	11.52	1.30 34	13.22	9.94	14.14 8.9	4
HEAVE, FT	-3.46	0.27 28	-3.10	-3.80	-2.91 -4.0	3
BØW ACCEL, G	-0.01	0.17 55	0.22	-0.20	0.34 -0.3	4
CG ACCEL. G	-0.02	0.08 43	0.10	-0.14	0.16 -0.2	0
STERN ACCEL, G	-0.02	0.07 37	0.08	-0.13	0.12 -0.1	8
RUN NØ 66	VELAC	TTY 15.0 K	NOTS EL	AP DEEL E	COTION -3.0 DE	G
WOIN IND OO	VELUC	3111 13•0 K	NOIS PL	A DEFE	2011010 - 3.0 22	G
	NUMBE	ER ØF WAVE	ENCOUNTER	RS 56		
	MEAN	RMS ØSC	AVE	ERAGE	1/3 HIGHES	T
PITCH, DEG	8.94	1.25 30	10.52	7 • 41	11.34 6.2	4
HEAVE, FT	-3.67	0.28 26	-3.32	-3.99	-3.14 -4.2	7
BØW ACCEL, G	0.01	0.14 52	0.19	-0.17	0.29 -0.2	7
CG ACCEL. G	-0.01	0.07 39	0.10	-0.12	0.15 -0.1	7
STERN ACCEL, G	-0.01	0.06 34	0.08	-0.10	0 • 1 1 - 0 • 1	5
RUN NØ 64	VEL 00	יודע וק.ה ע	NOTS FI	AP DEEL	ECTIÓN 0.0 DE	G
NON IVE OF	V 22 00	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,			3011011 010 00	_
	NUMBE	ER OF WAVE	ENCOUNTE	RS 56		
	MEAN	RMS ØSC	AVE	ERAGE	1/3 HIGHES	T
PITCH, DEG	7.64	1.21 29	9.10	6.25	10.12 5.2	5
HEAVE, FT	-3.89	0.27 24	-3.57	-4.18	-3.30 -4.4	5
BOW ACCEL, G	0.00	0.12 51	0.17	-0.16	0.25 -0.2	4
CG ACCEL. G	-0.02	0.06 39	0.08	-0.11	0.12 -0.1	5
STERN ACCEL. G	-0.0i	0.05 30	0.07	-0.09	0 • 11 -0 • 1	2
STEKN MULELS G	-0.01	0.00 30	0.07	~ 0 • 0 9	0.11 -0.1	ے

TABLE 13.12

WITH 8 FT CHINE WINGS	LCG = 12.5 F	T
-----------------------	--------------	---

RUN NØ 70	VELØ	CITY 15.0 KN	ØTS FL	AP DEFLE	CTION (0.0 DEG
	NUMB	ER ØF WAVE E	ENCOUNTER	RS 57		
		Duo				
PITCH, DEG		RMS ØSC 2.05 37		RAGE 17•18		15.59
HEAVE, FT		0 • 47 35	-0.51		-0.13	
BOW ACCEL, G			0 • 49		0.78	
			0.18		0.29	
STERN ACCEL, G			0.09			-0.26
RUN NØ 71	VELØ	CITY 15.0 KM	NØTS FL	AP DEFLE	ECTION 2	2.5 DEG
	NUMB	ER ØF WAVE E	ENCOUNTER	RS 62		
	MEAN	RMS ØSC	۸۷۶	CHAGE	1/2	I CUEST
PITCH, DEG		2.06 37		15.91		
HEAVE, FT	-1.09	0.46 36	-0.53		-0.16	
BOW ACCEL. G			0• 48			
CG ACCEL, G			0.19		0.30	
STERN ACCEL, G	-0.06	0.10 41	0.09	-0.20	0.16	
	_					
RUN NØ 72	VELØ	CITY 15.0 KM	10TS FL	AP DEFLE	ECTION :	5.0 DEG
	NUMB	ER ØF WAVE	ENCOUNTER	RS 55		
	MEAN	KMS ØSC	AVE	RAGE	1/3	I GHE ST
PITCH, DEG			19.87			
HEAVE, FT	-1.14	0 • 42 35	-0.57		-0.2	
BOW ACCEL, G	-0.03	0.34 56	0.44		0.72	
	-0.04	0.17 50	0.18	-0.26		-0.38
STERN ACCEL, G	-0.05	0.10 41	0.10	-0.19	0.15	-0.25
RUN NØ 74	VEL0	CITY 15.0 KM	NØTS FL	AP DEFLE	ECTION 10	O•O DEG
	NUMB	ER ØF WAVE	ENCOUNTER	RS 59		
	MEAN	UMC ACC	A11-	2224		U CUP CT
DITCU. DEC	MEAN	RMS ØSC		RAGE		HI GHE ST
PITCH, DEG	14.41	1•79 37 0•37 35	16.62		17.63	
HEAVE, FT BOW ACCEL, G	-1.17 -0.02	0.29 60	-0.72 0.37	-1.59 -0.34	-0·45 0·65	
CG ACCEL, G	-0.02	0.14 49	0.37	-0.34	0.25	
STERN ACCEL, G	-0.05	0.10 44	0.18	-0.23	0.25	
STENN MULLEL O	-0.03	0.10 44	0.00	-0.13	0.10	-0.23

TABLE 13.13

WITH 4 FT CHINE WINGS LCG = 12	۷.5	- 1
--------------------------------	-----	-----

RUN NØ 75	VEL0	CITY 15.0	KNØTS F	LAP DEFL	ECTI ØN	0.0 DEG
	NUMB	ER ØF WAV	E ENCOUNTE	ERS 59		
	MEAN	RMS ØS	C A	/ERAGE	1/3	HIGHEST
PITCH, DEG	18.31	1.92 3	7 20.57	15.77	21.66	14.27
HEAVE, FT	-1.79	0.43 3	4 -1.24	-2.28	-0.93	-2.59
BOW ACCEL, G	-0.04	0.32 5	4 0.38	-0.42	0.68	-0.66
CG ACCEL, G	-0.04	0.16 4	5 0.16	-0.27	0.26	-0.40
STERN ACCEL, G	-0.06	0.10 4	0 0.07	-0.21	0.13	-0.28
DUM NO 77	UEL a	CITY 15 O	ENGTE F	TIAD DEEL	CCTION	E 0 050
RUN NØ 76	VELO	0111 15.0	KNØTS F	LAP DEFL	LECTION	2.0 DEG
	NUMB	ER ØF WAV	E ENCOUNTE	ERS 54		
	MEAN	RMS ØS	C A	/ERAGE	1/3	HIGHEST
PITCH, DEG		1.58 3		13.24		
HEAVE, FT		0.33 3		-2.29		-2.56
		0.25 6		-0.31		
		0-12 4				-0.33
STERN ACCEL, G		0.09 3		-0.18		
RUN NØ 77 ·	VE1.0	CITY 15.0	KNØTS F	LAP DEFL	ECTION	10.0 DEG
	NUMB	ER ØF WAV	E ENCOUNTE	ERS 56		
	MEAN	RMS ØS	C A	/ERAGE	1/3	HIGHEST
PITCH, DEG		1.32 3				8.02
HEAVE, FT	-2.23			-2.54		-2.79
BOW ACCEL, G	-0.01			-0.24		-0.38
CG ACCEL, G	-0.02	0.09 4		-0.16	0.16	
STERN ACCEL. G	-0.03		7 0.09	-0.15	0.14	

The second

TABLE 13.14

WITH 4 FT CHINE WINGS LCG = 12.5 FT

RUN NØ 78	VELØ	CITY 30 • 1 K	NØTS FLAP DEF	ECTIÓN 0.0 DEG
,	NUMB	ER ØF WAVE	ENCOUNTERS 45	
	MEAN	RMS ØSC	AVERAGE	1/3 HIGHEST
PITCH, DEG	9.63	3.61 23	13.79 4.33	15.62 2.50
HEAVE, FT	0 • 38	0.69 22	1.24 -0.44	1.82 -0.76
BØW ACCEL, G	0.02	0.84 34	1.54 -0.62	2.52 -1.02
CG ACCEL, G	-0.01	0 • 41 45	0 • 49 - 0 • 32	0.90 -0.67
STERN ACCEL, G	-0.03	0.30 50	0.22 -0.40	0.55 -0.62
RUN NØ 79	VEL0	CITY 30•2 K	NØTS FLAP DEFI	LECTION 5.0 DEG
	NUMB	ER OF WAVE	ENCOUNTERS 44	
	MEAN	KMS ØSC	AVERAGE	1/3 HIGHEST
PITCH, DEG	6.85	2.37 25	9 • 61 3 • 53	11.17 1.82
HEAVE, FT	0.01	0.48 23	0.64 -0.57	1.03 -0.86
BOW ACCEL, G	0.00	0.70 46	1.05 -0.54	1.94 -0.95
CG ACCEL, G	-0.02	0.36 50	0.44 -0.28	0.78 -0.64
STERN ACCEL, G	-0.02	0.25 42	0•19 -0•33	0.45 -0.52

TABLE 13.15

WITH 45 DEGREE CHINE FLAPS LCG = 12.5 FT

RUN NØ 81	VEL 0	OCITY 15•1 H	(NØTS FI	LAP DEFL	ECTI ØN	2.5 DEG
	NUME	BER OF WAVE	ENCOUNTE	RS 53		
	MEAN	RMS ØSC	AVI	ERAGE	1/3	HIGHEST
PITCH, DEG	11.50	1 • 45 35	13.43	9.66		8.64
HEAVE, FT	-2.47	0.32 31		-2.87	-1.83	
	0.00	0.21 56	0.27		0.44	-0.39
		0.11 43	0.13			
	-0.C3		0.10			
		OCITY 15•1 H				
MOIN IND OF	VELE	OI 11 13•1 F	(MDID FI	LA DEFE	ECTION	J.O DEG
	NUME	BER ØF WAVE	ENCOUNTE	KS 57		
	MEAN	RMS ØSC	AVI	ERAGE	1/3	HI GHEST
PITCH, DEG	9.60	1 • 46 35	11.46	7.80	12.53	6.81
HEAVE, FT	-2.62	0.31 30	-2.20	-3.02	-1.97	-3.30
BØW ACCEL, G	0.00	0.20 50	0.27	-0.27	0.41	-0.40
CG ACCEL, G	0.00	0.10 42	0.14	-0.16	0.21	-0.24
STERN ACCEL, G	-0.01	0.09 42	0.11	-0.14	0.18	-0.21
RUN NØ 83	VEL 0	OCITY 30.1 H	(NØTS FI	LAP DEFL	ECTION	0.0 DEG
	NUME	BER ØF WAVE	ENCOUNTE	RS 47		
	MEAN	RMS ØSC	AVI	ERAGE	1/3	HI GHE ST
PITCH, DEG	8.80	2.93 21				2.94
HEAVE, FT	0.18	0.62 21		-0.56	1.52	
BØW ACCEL, G	0.01	0.68 41	1.05		1.86	
CG ACCEL, G		0.35 45	0.37		0.68	
STERN ACCEL. G	-0.01	0.26 43			0.53	-0.53

TABLE 13.16

WITH 45 DEGREE CHINE FLAPS 1.CG = 12.5 FT

RUN NØ 84	VEL@CI	TY 30.1 KN	OTS FLAP DEFLE	CCTION 2.5 DEG
	NUMBER	ØF WAVE E	NCØUNTERS 48	
PITCH, DEG HEAVE, FT BØW ACCEL, G CG ACCEL, G STERN ACCEL, G	0.00 0.01 0.00	RMS ØSC 2.35 22 0.51 21 0.62 48 0.33 50 0.24 44	AVERAGE 10.47 4.21 0.68 -0.61 0.86 -0.41 0.37 -0.26 0.23 -0.28	1/3 HIGHEST 11.67 2.70 1.05 -0.91 1.55 -0.91 0.66 -0.59 0.44 -0.45
RUN NØ 85	VELØCI	TY 30+1 KN	ØTS FLAP DEFLE	CCTION 5.0 DEG
	NUMBER	ØF WAVE E	NCØUNTERS 44	
PITCH, DEG HEAVE, FT BØW ACCEL, G CG ACCEL, G STERN ACCEL, G	-0.17 0.01 0.00	RMS ØSC 1.90 23 0.42 22 0.57 49 0.30 50 0.22 37	AVERAGE 8.85 3.74 0.39 -0.64 0.85 -0.40 0.38 -0.24 0.21 -0.28	1/3 HIGHEST 9.88 2.47 0.69 -0.89 1.48 -0.85 0.63 -0.57 0.39 -0.43

TABLE 14 REGULAR WAVES

MODEL S-5 WITH 45° DEADRISE CHINE FLAPS TRANSOM FLAP DEFLECTION = 0 LCG = 12.5 FT

RUN 89 , SPEED = 15 KNOTS WAVE LENGTH = 83 FT MODEL DRAG = 10.8 LB WAVE HEIGHT = 1.9 FT FREQUENCY OF ENCOUNTER = 0.561 HZ

FREQ.	MULTI	PLE:	0	5	.1.	Ü	2	Ö	3 .	Ü
		MEAN	AMP	PHASE	AMP	PHASE	AMP	PHASE	AMP	PHASE
WAVE	FT	0.10	0.01	53.	0.93	٠ .ا.	0.03	352.	0.01	133.
PITCH	DEG	13.67	0.07	26.	3.28	Ű.	0.08	138.	0.02	
HEAVE	FT	-2.32	0.02	92.	0.62	62.	0.00	125.	0.00	195.
BOW ACC	G	-0.02	0.00	261.	0.43	211.	0.03	308.	0.01	
CG ACC	6	-0.03	0.00	260.	0.24	238.		299.	0.00	
STERN AC	C G	-0.03	0.00	269.	0.20	284.	0.00	241.	0.00	261.

RUN 90 , SPEED = 20 KNOTS WAVE LENGTH = 83 FT MODEL DRAG = 9.7 LB WAVE HEIGHT = 1.9 FT FREQUENCY OF ENCOUNTER = 0.665 HZ

FREQ.	MULTI	PLE:	Ü	. 5	1.	• Ü) A::	• Ö -	3	Ö
		MEAN	AMP	PHASE	AMP	PHASE	Airti-	F'HASE	ብዝቡ	PHASE
	FT	0.01	0.01	255.	0.94	329.	0.05	295.	0.00	285.
PITCH	DEG	14.35	0.03	281.	3.82	Û.	0.39	155.	0.10	311.
HEAVE	FT	-0.74	0.01	344.	0.77	49.	0.03	179.	0.01	319.
BOW ACC	G	-0.03	0.00	268.	0.76	206.	0.22	3000	0.10	137.
CG ACC	G	-0.03	0.00	142.	0.42	227.	0.07	351.	0.04	127.
STERN AC	C G	-0.04	0.00	132.	0.28	270.	0.04	173.	0.02	345.

RUN 91 , SPEED = 25 KNOTS WAVE LENGTH = 83 FT MODEL DRAG = 8.3 LB WAVE HEIGHT = 1.9 FT FREQUENCY OF ENCOUNTER = 0.768 HZ

FREQ. MUL	TIPLE:	0.5	1.0	2.0	3.0
	MEAN	AMP PHASE	AMP PHASE	AMP PHASE	AME PHASE
WAVE F	T -0.01	0.02 119.	0.94 299.	0.04 255.	0.01 214.
PITCH DE	G 11.27	0.02 348.	3.63 0.	V.44 165.	0.19 327.
HEAVE F	T 0.12	0.01 2.	Ŭ•68 41•	0.04 160.	0.01 299.
BOW ACC	G -0.01	0.00 252.	0.95 202.	0.38 350.	0.24 139.
CG ACC	G -0.01	0.00 227.	0.50 219.	0.12 344.	0.09 129.
STERN ACC	G -0.03	0.00 298.	0.29 266.	0.08 183.	ö. Ö4 350.

TABLE 14.2 REGULAR WAVES

RUN 92 , SPEED = 30 KNOTS WAVE LENGTH = 83 FT MODEL DRAG = 8.0 LB WAVE HEIGHT = 1.8 FT FREQUENCY OF ENCOUNTER = 0.874 HZ

FREQ. MULTI	PLE:	0.5		.1 .	Ö	2.	. 0	3	. 0
WAVE FT PITCH DEG HEAVE FT BOW ACC G CG ACC G STERN ACC G	MEAN -0.09 8.85 0.20 -0.00 -0.01 -0.02	0.01 0.83 3	13. 76. 95.	AMP 0.91 3.01 0.55 1.02 0.52 0.27	0. 37. 200. 216.	AMP 0.04 0.42 0.04 0.46 0.15	PHASE 230. 155. 162. 346. 334. 196.	AMP 0.00 0.15 0.01 0.30	FHASE 245. 320. 302. 133. 117.

RUN 95 , SPEED = 15 KNOTS WAVE LENGTH = 110 FT MODEL DRAG = 10 . 7 LB WAVE HEIGHT = 1.8 FT FREQUENCY OF ENCOUNTER = 0.447 HZ

FREQ.	MULTI	PLE:	0.5	ıl.	. 0	2.	Ö	. 3.	Ü
		MEAN	AMP PH	IASE AMP	PHASE	UMI.	PHASE	AME	PHASE
WAVE	FT	-0.08	0.01 31	5. 0.89	259.	0.01	128.	0.01	95.
FITCH	DEG	13.10	0.02 26	2. 4.06	0.	0.04	124.	0.02	146.
HEAVE	FT	-2.30	0.01 2	25. 0.97	313.	0.00	187.	0.00	143.
BOW ACC	G	-0.02	0.00 22	21. 0.36	löö.	0.01	ól.	O.OL	359.
CG ACC	G	-0.03	0.00 19	0.24	128.	0.00	60.	0.01	ló.
STERN AC	• • • • • • • • • • • • • • • • • • • •	140.00	0.00 26	52. 0.22	152.	0.00	74.	0.00	89.

KUN 96 , SPEED = 20 KNOTS WAVE LENGTH = 110 FT MODEL DRAG = 9.7 LB WAVE HEIGHT = 1.8 FT FREQUENCY OF ENCOUNTER = 0.526 HZ

FREQ. MULTI	PLE:	0.5	1.0	2.0	3.0
WAVE FT		AMP PHASE 0.02 344.	AMP PHASE 0.88 355.	AMP PHASE 0.03 346.	AMF FHASE 0.00 99.
PITCH DEG HEAVE FT	,	0.08 148. 0.02 182.	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0.53 lo4. 0.04 los.	0.11 311. 0.01 344.
CG ACC G	-0.02 -0.02	0.01 7. 0.00 28.	0.69 212. 0.42 236.	0.10 350. 0.06 356.	0.08 137. 0.02 131.
STERN ACC G	-0.04	0.00 74.	0.33 272.	0.04 150.	0.02 324.

TABLE 14.3 REGULAR WAVES

RUN 97 , SPEED = 25 KNOTS WAVE LENGTH = 110 FT MODEL DRAG = 8.9 LB WAVE HEIGHT = 1.8 FT FREQUENCY OF ENCOUNTER = 0.604 HZ

FREQ.	MULTI	PLE:	Ö	. 5	1	· Ö	2	• ()	3	Ü
		MEAN	AMP	PHASE	AMP	PHASE	AMP	PHASE	AMP	PHASE
WAVE	FT	-0.02	0.02	32.	0.89	320.	0.03	258.	0.01	29.
PITCH	DEG	11.22	0.04	79.	5.96	O.	0.87	107.	0.25	312.
HEAVE	FT	0.09	70.0	85.	1.26	53.	0.06	177.	0.02	315.
BOW ACC	G	-0.02	0.01	268.	0.98	209.	0.40	354.	0.25	141.
CG ACC		-0.02	0.00	286.	0.58	231.	6.12	356.	0.08	126.
STERN AC	CG	-0.02	0.00	13.	0.42	270.	0.09	167.	0.00	340.

RUN 98 , SPEED = 30 KNOTS WAVE LENGTH = 110 FT MODEL DRAG = 9.2 LB WAVE HEIGHT = 1.7 FT FREQUENCY OF ENCOUNTER = 0.680 HZ

FREQ. MULTIPLE:		0.5		1 • Ü		2.0		3.0		
		MEAN	AMP	PHASE	AMP	FHASE	AMP	FHASE	AME	PHASE
WAVE	FT	-0.21	0.01	175.	0.86	297.	0.02	219.	0.00	332.
PITCH :	DEG	8.99	0.05	134.	5.19	Ü.	0.82	167.	0.31	311.
HEAVE	FT	0.19	0.02	200.	1.07	51.	0.07	176.	0.02	304.
BOM ACC	G	0.01	0.00	349.	1 09	208.	0.51	357.	0.33	142.
CG ACC	G	-0.01	0.00	13.	0.65	230.	0.15	359.	0.13	123.
STERN ACC	G	-0.01	0.00	18.	0.45	271.	0.11	172.	0.08	23.

RUN 99 , SPEED = 15 KNOTS WAVE LENGTH = 110 FT MODEL DRAG = 11.7 LB WAVE HEIGHT = 3.6 FT FREQUENCY OF ENCOUNTER = 0.448 HZ

FREG. MULTIPLE:		0.5		1.0		2.0		3.0		
		MEAN	AME	PHASE	AMP	PHASE	AME	PHASE	AME	PHASE
WAVE	FT	-0.06	0.01	loü.	1.80	21.	0.12	42.	0.01	257.
PITCH	DEG	13.58	0.03	353.	8.32	Ü.	0.60	157.	0.12	266.
HEAVE	FT	-2.33	0.00	93.	2.09	72.	0.06	153.	0.01	302.
HOW ACC	G	-0.02	0.00	263.	0.77	220.	0.14	338.	0.07	110.
CG ACC	G	-0.04	0.00	298.	0.52	248.	0.05	348.	0.02	10%.
STERN ACC	C G	-0.04	0.00	332.	0.40	281.	0.02	91.	0.01	289.

TABLE 14.4 REGULAR WAVES

RUN101 , SPEED = 25 KNOTS WAVE LENGTH = 110 FT MODEL DRAG = 11.1 LB WAVE HEIGHT = 3.6 FT FREQUENCY OF ENCOUNTER = 0.601 HZ

FREQ. MULTIPLE:	4 ' 117	1.0	2.0	3.0	
WAVE FT -0.0 PITCH FEG 13.00 HEAVE FT 0.49 BOW ACC G -0.0 CG ACC G -0.0 STERN ACC G -0.0	0.01 298. 0.21 34. 0.07 47. 0.01 208. 0.01 207.	AMP PHASE 1.80 311. 7.04 0. 1.93 48. 1.37 209. 0.87 226. 0.61 254.	AMP PHASE 0.10 272. 1.35 188. 0.14 192. 0.70 17. 0.25 16. 0.08 194.	AMP PHASE 0.01 190. 0.35 347. 0.04 341. 0.45 174. 0.18 151.	

FIGURE 1. LVA CONFIGURATIONS

FIGURE 2. APPENDAGES (Dimensions in Ft)

FIGURE 4. EXPERIMENTAL WAVE SPECTRUM SIGNIFICANT HEIGHT 2.2 FT

FIGURE 5. DETERMINATION OF EQUILIBRIUM TRIM AT 30 KNOTS 55,000 LB. DISPLACEMENT, SHAFT ANGLE 15 DEGREES FOR CONFIGURATION S-5

FIGURE 6. PERFORMANCE OF S-5 AT 55,000 LB, 12.5 FT LCG, NO CHINE FLAPS, SHAFT LINE PARALLEL TO KEEL

FIGURE 7. S-5 HEAVE MOTION !N SEA STATE 2.2 FT SIGNIFICANT HEIGHT

FIGURE 8. S-5 PITCH MOTIONS IN SEA STATE 2.2 FT SIGNIFICANT HEIGHT

FIGURE 9. S-5 C.G. ACCELERATION IN SEA STATE 2.2 FT SIGNIFICANT HEIGHT

FIGURE 10. S-5 SEAKEEPING CHARACTERISTICS IN SEA STATE 2.2 FT SIGNIFICANT HEIGHT

FIGURE 11. S-5 HABITABILITY CHARACTERISTICS, 55,000 LB, 2.2 FT SIGNIFICANT HEIGHT WAVES

Maximum 1/3-octave RMS CG Acceleration g units

FIGURE 12. RELATION BETWEEN MAXIMUM 1/3-OCTAVE AND TOTAL RMS ACCELERATION

FIGURE 13. COMPARATIVE ROUGH WATER PERFORMANCE, 55,000 LB DISPLACEMENT, 2.2 FT SIGNIFICANT HEIGHT WAVES

FIGURE 14. HEAVE MOTION IN SEX STATE SIGNIFICANT HEIGHT 2.2 FT

FIGURE 15. PITCH MOTION IN SEA STATE SIGNIFICANT HEIGHT 2.2 FT

FIGURE 16. COMPARATIVE HABITABILITY CHARACTERISTICS AT 30 KNOTS, 55,000 LB, 2.2 FT SIGNIFICANT HEIGHT WAVES

FIGURE 17. EFFECT OF FLAP DEFLECTION ON CALM WATER PERFORMANCE AT 30 KNOTS, 50,000 LB DISPLACEMENT

FIGURE 18. EFFECT OF CHINE FLAPS ON S-5 AT 55,000 LB IN 2.2 FT SIGNIFICANT HEIGHT WAVES

FIGURE 19. MOTION AND ACCELERATION AMPLITUDES IN REGULAR WAVES 1.8 FT HIGH BY 110 FT LONG.

CONFIGURATION S-5 WITH 45 DEGREE CHINE FLAPS

FIGURE 20. EFFECT OF THRUST AXIS INCLINATION TO KEEL, S-5, 55,000 LB, 2.2 FT SIGNIFICANT HEIGHT WAVES

APPENDIX A

EXPANSION OF MODEL RESISTANCE DATA TO FULL-SCALE

INTRODUCTION

The methods used to expand the model data are described in this appendix. Due to the exploratory nature of the test series and the different techniques used in the various phases, it was desirable to apply uniform expansion procedures and to provide for interpolation. The procedures used to expand the basic resistance data obtained with Configuration S-5, without chine flaps, with an LCG of 12.5 inches, are described, followed by the method of determining the drag increments of other configurations, (Tables 7 and 8).

The calm water model data is presented in Tables Al to A4. The rough water resistance data is included in Table 9.

EXPANSION OF S-5 MODEL DATA

The total drag is made up of induced drag, friction drag, form or profile drag, and added resistance in waves:

$$R_{T} = R_{i} + R_{f} + R_{p} + R_{aw}$$
 (A1)

where

 $R_i = \Delta \tan \tau$

$$R_f = C_f \frac{1}{2} \rho V^2 S$$

S = wetted area

 Δ = load on water

τ = trim

It is assumed that the profile drag is a function of the load and trim. The added resistance in waves is assumed to be independent of load over the range investigated, and to be a function of trim. Thus the functional dependence of resistance at any one speed is assumed to be:

$$R_{T} = R_{i}(\Delta, \tau) + R_{f}(\Delta, \tau) + R_{p}(\Delta, \tau) + R_{aw}(\tau)$$
(A2)

The friction drag coefficient depends on the wetted length, which is a function of load and trim, as is the wetted area. Hence the friction drag is a function of load and trim.

Calm Water Drag

The major drag component is the induced drag, cf. Figure 17, and it is therefore appropriate to re-arrange Equation (Ai) in the form:

$$R_{T} - \Delta \tan \tau = R_{f} + R_{p} \tag{A2}$$

The typical behavior of the quantity on the left-hand side of this equation is shown on Figure Al for a speed of 14.64 fps (30 knots). At high trim the curves approach an asymptote that is independent of load. At low trim the drag increases sharply due to the increase in profile drag, which reflects the progressive immersion of the bow. At trims above the knee of the curve the friction drag component predominates. Since this drag is a function of the wetted length the same data is shown as a function of wetted length on Figure A2. (The quantity MWL is the mean distance of the leading edge of the wetted area forward of the transom.) In this presentation the parametric effect of load is collapsed.

It was found empirically for this hull that wetted length was related to the load, speed and trim by:

$$MWL/b = 134.75 \sqrt{(C_{L_b}/\tau)}$$
where
$$C_{L_b} = \Delta / \frac{1}{2} \rho V^2 b^2$$

$$b = beam$$
(A3)

With the aid of this equation and Figure A2 it is possible to interpolate for the calm water resistance at arbitrary values of trim and load.

Added Resistance in Waves

The rough water tests were all made at a model displacement of 31 lb (55,000 lb full-scale). From the total resistance in waves the calm water drag was subtracted, to determine the added resistance in waves. The calm water drag was estimated, with the aid of Equation (A3) and graphs corresponding to Figure A2, at the observed mean trim in waves for a displacement of 31 lb.

A plot of the results obtained in shown on Figure A3. This added resistance is assumed to be independent of load in the model range of 25 lb to 34 lb. At a speed corresponding to 15 knots the S-5 showed no added resistance in waves.

The method described was used to estimate the total model resistance of Configuration S-5, without chine flaps, at model displacements corresponding to 45,000, 50,000, 55,000 and 60,000 lb, speeds corresponding to 15, 20, 25 and 30 knots, and for appropriate integral values of trim, to form the basis for Tables 3 to 6.

Resistance Expansion

The 1/12-scale model results were expanded from fresh water at 70° F (62.3 lb/cu.ft) to sea water at 59° F (64 lb/cu.ft). Denoting model quantities by suffix m and the full-scale ship values by suffix s, the following expression was used to obtain the full-scale results:

$$R_{T_{S}} = \left[R_{T_{m}} - (c_{f_{m}} - c_{f_{S}}) \frac{1}{2} \rho_{S} v_{m}^{2} s_{m} \right] (\Delta_{S} / \Delta_{m})$$
 (A4)

In determining the wetted area it was assumed that above 7.32 fps (15 knots) the flow detached from the break in the buttock lines, cf Figure 2. The skin friction coefficient was determined from the ATTC correlation line without roughness allowance. The Reynolds number was based

on the distance from the leading edge of the wetted area to the trailing edge of the flap.

At speeds corresponding to 15 knots and less the frictional drag accounts for only 3% of the total resistance. For these speeds, therefore, the simple expansion:

$$R_{\mathsf{T}_{\mathsf{S}}} = R_{\mathsf{T}_{\mathsf{m}}} (\Delta_{\mathsf{S}} / \Delta_{\mathsf{m}}) \tag{A5}$$

was used, with an error of the order of 1%.

The displacement ratio is:

$$\Delta_{\rm s}/\Delta_{\rm m} = 1775 \tag{A6}$$

DRAG INCREMENTS RELATIVE TO S-5

The method of determining the resistance increment relative to Configuration S-5 is best explained by an example. To find the increments for Configuration P-1 at 20 knots, for instance, the total model resistance in waves at 9.76 fps is plotted as shown in Figure A4. The corresponding smooth curve for S-5 is also shown. The increment in model resistance is then read off at trims of 12, 13, 14 and 15 degrees.

The increments determined in this manner are expanded to full scale and presented in Tables 7 and 8 using the equation:

$$\delta R_{s} = \delta R_{m} \left(\Delta_{s} / \Delta_{m} \right) \tag{A7}$$

By implication, therefore, it is assumed that the frictional drag component of all configurations is the same as that determined for Configuration S-5.

TABLE A1

SMOOTH WATER DATA FOR CONFIGURATION ?-1
WITHOUT CHINE FLAPS LCG = 12.5 IN.

				TRANSOM		
				FLAP		
RUN	SPEED	LOAD	TRIM	MNGLE	DKAG	MWL
	FPS	LB	DEG	DEG	LB	IN
1	4.89	31.0	-0.20	0.0	1.76	23.0
11	4.89	28.2	2.42	0.0	4.09	25.0
17	4.89	33.8	2.45	0.0	4.68	25.0
42	7 • 30	28.3	15.20	15.0	9 • 79	20.5
41	7 • 30	30.6	16.00	15.0	11.30	20.5
2	7.22	30.8	18.30	0.0	12.88	20.0
16	7 • 30	24.4	20.10	0.0	9.87	19.0
12	7 • 30	22.6	21.30	0.0	9.87	17.5
10	7 • 30	25.6	22.00	0.0	11.97	
4	7 • 32	26.9	22.40	0.0	12.84	16.5
18	7 • 30	28.0	23.00	0.0	13.23	17.3
43	9 • 75	29.6	10.90	15.0	7 • ১৪	18.5
40	9.76	31.7	12.33	15.0	9.03	17.0
380	9.75	31.0	12.70	10.0	9.24	
39	9.76	31.8	13.54	12.5	9 • 57	17.0
381	9.75	31.0	13.70	7.5	9 • 41	
382	9.75	31.0	14.80	5.0	9.80	
13	9.75	26 • 1	16.00	0.0	8 • 42	14.0
7	9.76	27.8	17.20	0 • C	9.82	15.5
5	9.73	27.0	17.50	0.0	10.03	15.5
19	9.76	30.5	18.50	0.0	11.53	14.5
44	12.20	30.2	7.50	12.5	5.99	17.5
166	12.19	31.0	7∙੪0	12.5	7.35	
38	12.20	38 • 9	8.17	12.5	6.71	17.0
31	12.20	32.7	9.47	10.0	7.31	15.5
32	12.20	32.2	11 • 40	5.0	7.99	18 • 5
14	12.19	26 • 8	11.50	0.0	6 • 67	13.5
6	15.18	28 • 8	12.40	0.0	7.97	13.5
8	12.20	29.2	12.40	0.0	7.98	13.5
20	12.19	31.2	13.50	0.0	8 * 80	13.0

TABLE A1.2

WITHOUT CHINE FLAPS LCG = 12.5 IN.

				TRANSOM		
42				FLAP	0: 40	
RUN	SPEED	LØAD	TKIM	ANGLE	DKAG	MWL
	FPS	LB	DEG	DEG	ГB	IN
51	14.64	30 • 6	4.60	12.5	4.97	17.5
36	14.63	33.3	4.71	12.5	5.29	17• ೮
34	14.65	33.0	5.92	10.0	5.71	17.0
26	14.65	33.0	5.95	10.0	5 • 68	16.5
52	14.65	30.3	6 • 40	7 • 5	5.20	16.0
377	14.62	31.0	6.90	7.5	5.84	
24	14.65	33.1	7.00	7.5	6.10	14.5
25	14.65	33.2	6.99	7.5	6.04	15.8
378	14.62	31.0	7 • 40	5.0	6.06	
23	14.65	33.0	7.90	5.0	6 • 36	14.5
379	14.62	31.0	8 • 40	2.5	6 • 46	
15	14.62	27.4	8.50	0.0	5• 59	13.0
22	14.65	32.8	8.80	2.5	6.75	13.3
9	14.64	30.0	9.20	0.0	6.71	P
21	14.65	32.6	9.90	0.0	7.21	۲
46	17.08	30.7	2.30	12.5	6.24	20.0
45	17.08	30.7	2.40	12.5	7.20	20.5
37	17.08	33.5	2.89	12.5	6.25	20.3
27	17.08	33.5	3.75	10.0	5.03	17.5
50	17.08	30.7	3.70	10.0	4.58	16.5
47	17.08	30 • 4	4.10	7.5	4.55	15.5
49	17.08	30 • 5	5.20	5.0	4.85	14.5
28	17.08	33.3	5.64	5.0	5 • 46	15.0
35	17.08	33.2	5.67	5.0	5.53	15.0
48	19.52	30•8	2.80	7.5	4.58	17.0
30	19.50	33.6	3.14	7.5	4.96	16.5
53	19.52	30.7	4.00	5.0	5.80	12
29	19.50	33.4	4.13	5.0	5.00	14.0

TABLE A1.3

.ITHOUT CHINE FLAPS LCG = 12.7 IN.

				TRANSØM FLAP		
RUN	SPEED FPS	LB LØAD	TRIM DEG	ANGLE DEG	LB DKAG	MWL IN
54	4.89	31.0	0.97	0.0	4•52	25.0
55	7 • 30	26 • 4	20.80	0.0	11.31	17.5
56	9•76	28•4	16.30	C • O	9.76	15.0
57	12.20	29•3	12.10	0.0	7.60	13.5
58	14.65	30 • 1	8•90	0.0	6.24	13.0
61 60 59	17.08 17.08 17.08	30.7 30.7 30.5	4.20 5.10 6.90	7·5 5·0 0·0	4.64 4.88 6.71	17•5 15•0 P

	WITHOUT CHINE FLAPS			LCG = 13.5 IN.		
7 8	7 • 30	28.6	10.92	15.0	10.47	21.5
63	7 • 30	26.5	18.70	0.0	10.35	19.5
77	9.76	29 • 3	10.38	15.0	8.79	20.5
64	9.76	29.2	15 • 47	0.0	9 • 37	16.0
76	12.20	30 • 1	7.75	12.5	6 • 56	17.3
65	12.20	29.1	11 • 48	0.0	7.35	14.0
74	14.65	30 • 3	4.52	12.5	5.20	19.0
75	14.65	30 • 3	5.89	7 • 5	5.21	17.0
66	14.64	30.2	8.54	0.0	6.4	

TABLE A1.4

WITHOUT CHINE FLAPS LCG = 13.5 IN.

	TKAN SØM FLA P							
RUN	SPEED FPS	LØAD LB	TKIM DEG	ANGLE DEG	DRAG LB	MWL		
71	17.08	30•8	2 • 48	12.5	11.94	23.0		
70	17.08	30 • 7	3.32	10.0	5 • 18	18.8		
69	17.08	30 • 7	4.12	7 • 5	5.06	18.5		
68	17.08	30 • 5	4.92	5.0	4.97	17.0		
72	19.52	30 • ಕ	2.76	7 • 5	4.77	17.5		
73	19.50	30.7	3.66	5.0	4.74	16.0		

WITHOUT CHINE FLAPS LCG = 10.5 IN. 9.82 15.0 31.0 13.70 9.75 10.23 9.75 31.0 14.80 12.5 10.67 10.0 9.75 31.0 15.90 9.75 31.0 20.40 5.0 23.37 11.98 5.0 9.75 31.0

10.0 5.93 6.20 376 14.62 31.0 7.5 6.30 14.62 31.0 7.40 375 5.0 374 14.62 31.0

NOTE: P indicates porpoising condition.

347

348

349

336

335

TABLE A1.5

WITH CHINE FLAPS LCG = 12.5 IN.

				TRANSOM		
				FLAP		
RUN	SPEED	LØAD	TRIM	ANGLE	DRAG	MWL
	FPS	LB	DEG	DEG	LB	IN
101	7 00	24 0		15 0		
196	7 • 30	31.0	8.00	15.0	11.09	4 7 0
88	7 • 30	29.7	12.79	15.0	8 • 66	18.0
198	7 • 30	31.0	16.10	0.0	10.87	
79	7 • 30	27.6	18 • 44	0•0	10.57	18.5
195	9.75	31.0	7.30	15.0	6.56	
89	9.75	30 • 4	7 • 49	15.0	5.92	20.0
194	9.75	31.0	11.70	U • O	8 • 14	
80	9.76	29.0	12.17	0.0	7 • 38	12.5
90	12.20	30.7	4.44	12.5	4 • 60	17.5
190	12.19	31.0	4.50	12.5	4.92	
192	12.19	31.0	7.70	0.0	6.04	
82	12.20	30 • 4	7.98	0.0	5.65	12.8
02	12.20	0014	1470	0.0	3.03	
92	14.65	30.9	2.06	12.5	4.06	18.0
188	14.63	31.0	2.30	12.5	5.09	
136	14.63	31.0	3.40	7.5	4.38	
91	14.65	30.7	3.43	7.5	4.12	14.8
184	14.63	31.0	4.10	5.0	4.60	
93	14.65	30.7	4.11	5.0	4.24	18.0
84	14.65	30 • 6	4.74	2.5	4.41	13.5
83	14.64	30.6	5 • 46	0.0	4.73	P
87	17.08	30.9	1.98	7.5	4.10	16.0
178	17.06	31.0	2.10	7.5	4.32	
86	17.08	30 • 8	2.66	5.0	4.06	P
180	17.06	31.0	2.80	5.0	4.30	•
.00	.,,,,,	00	2.00	3.0	7.00	
94	19.50	30.9	1 • 11	7.5	4 • 48	16.5
179	19 • 49	31.0	1.30	7.5	4.95	
95	19.52	30.8	1.78	5.0	4.29	14.3
181	19 • 49	31.0	1.90	5.0	4.55	

TABLE A2

SMOOTH WATER DATA FOR CONFIGURATION S-1
WITHOUT CHINE FLAPS LCG = 12.5 IN.

				THANSOM		
				FLAP		
KUN	SPEED	LØAD	TRIM	ANGLE	DRAG	MWL
	FPS	LB	DEG	DEG	LB	IN
96	4.90	30 • 9	4.37	0.0	3.53	23 • 5
110	7 • 30	27.8	13.59	15•0	9 • 39	20.5
97	7 • 30	24.8	21.27	0.0	10.41	15.0
, ,	7.50	2440	21.21	0.0	10141	.5.0
111	9.76	30 • 0	10.21	15.0	7. 50	20.0
118	9.76	29 • 5	11.18	12.5	7 • 47	18.5
39 1	9.75	31.0	12.50	10.0	9.21	
389	9.75	31.0	13.40	7.5	8.82	
390	9.75	31.0	14.60	5.0	9.35	
98	9•76	29 • 3	16.76	0.0	9 • 43	16.5
112	12.19	30 • 1	6 • 65	12.5	5.77	20.0
116	12.19	30 • 1	7.90	10.0	5.97	17·8
99	12.19	29•2	11.87	0 • 0	6.88	13.8
117	14.65	30 • 4	4.71	10.0	5.02	20.0
101	14-64	30.5	5.57	7.5	4.81	17.5
388	14.62	31.0	6.00	7.5	5.42	
386	14.62	31.0	7.00	5.0	5.39	
387	14.62	31.0	7.90	2.5	5 • 7 7	
102	17.08	30 • 8	3.50	7.5	4.50	19.5
105	17.08	30 • 5	4.46	5.0	4.45	17.0
106	17.08	30 • 5	5.37	2.5	4.65	15.0
108	19.52	30 • 8	3 · 17	5•0	4.61	
107	19.50	30.7	4.06	2.5	4.61	15.5

TABLE A2.2

WITH CHINE FLAPS LCG = 12.5 IN.

			TIDANICAN		
20000				55.45	
					MWL
FPS	LB	DEG	DEG	LB	IN
	00.0	40.00	4.5.0		4.00
					19.5
					19.0
					18.0
7.30	27.6	14.81	0.0	7.93	
7.30	29.0	17.36	0.0	9.96	16.5
9.76	29.9	6.87	15.0	5.36	17.5
9.75	31.0	10.95	0.0	6.35	15.0
12.19	30.8	3.98	12.5	4.39	18.8
12.20	31.3	7.37	0.0	4.96	
14.64	30.8	3.05	7.5	4.00	17.0
14.64	30.7	3.72	5.0	3.99	15.0
14.65	30.7	4.35	2.5	4.08	14.0
14.64	3 7	5.00	0.0	4.11	13.5
17.08	30∙8	1.74	7.5	4.30	18.8
17.08	30.8	2.40	5.0	3.96	16.5
	30.8	3.00	2.5	3.94	14.2
19.52	30.9	1.53	5.0	4.53	17.5
					15.0
17-02	30-3	C - 1 1	2.5	7.23	
	9.76 9.75 12.19 12.20 14.64 14.65 14.65	7.30 29.9 7.30 29.8 7.30 27.6 7.30 27.6 7.30 27.6 7.30 29.0 9.76 29.9 9.75 31.0 12.19 30.8 12.20 31.3 14.64 30.8 14.64 30.7 14.65 30.7 14.65 30.7 14.65 30.7 14.65 30.7 17.08 30.8 17.08 30.8 17.08 30.8	FPS LB DEG 7.30 29.9 12.30 7.30 29.8 12.88 7.30 27.6 13.96 7.30 27.6 14.81 7.30 29.0 17.36 9.76 29.9 6.87 9.75 31.0 10.95 12.19 30.8 3.98 12.20 31.3 7.37 14.64 30.8 3.05 14.65 30.7 4.35 14.64 37 5.00 17.08 30.8 1.74 17.08 30.8 2.40 17.08 30.8 3.00 19.52 30.9 1.53	FPS LB DEG DEG 7.30 29.9 12.30 15.0 7.30 29.8 12.88 15.0 7.30 27.6 13.96 2.5 7.30 27.6 14.81 0.0 7.30 29.0 17.36 0.0 9.76 29.9 6.87 15.0 9.75 31.0 10.95 0.0 12.19 30.8 3.98 12.5 12.20 31.3 7.37 0.0 14.64 30.8 3.05 7.5 14.65 30.7 4.35 2.5 14.64 37 5.00 0.0 17.08 30.8 1.74 7.5 17.08 30.8 2.40 5.0 17.08 30.8 3.00 2.5 19.52 30.9 1.53 5.0	SPEED FPS LØAD LB TRIM DEG ANGLE DEG DRAG LB 7.30 29.9 12.30 15.0 8.01 7.30 29.8 12.88 15.0 8.26 7.30 27.6 13.96 2.5 7.56 7.30 27.6 14.81 0.0 7.93 7.30 29.0 17.36 0.0 9.96 9.76 29.9 6.87 15.0 5.36 9.75 31.0 10.95 0.0 6.35 12.19 30.8 3.98 12.5 4.39 12.20 31.3 7.37 0.0 4.96 14.64 30.8 3.05 7.5 4.00 14.65 30.7 4.35 2.5 4.08 14.64 37 5.00 0.0 4.11 17.08 30.8 1.74 7.5 4.30 17.08 30.8 2.40 5.0 3.94 17.52 30.9 1.53 <t< td=""></t<>

WITH CHINE FLAPS AND FULL SPAN TRANSOM FLAP LCG = 12.5 IN.

237 238 241 240	7·30 7·30 7·30 7·30	29.6	6.90 10.40 11.50 12.50	5.0 5.0 2.5 2.5	9 • 63 7 • 21 7 • 22 7 • 46	21.0
242	9.75	30.4	8.00	2.5	5.54	17.0

TABLE A3

SMOOTH WATER DATA FOR CONFIGURATION S-3 WITHOUT CHINE FLAPS BOW RAMP EXTENDED LCG = 12.5 IN.

				TRANSØM FLAP	
RUN	SPEED	LØAD	TRIM	ANGLE	DRAG
	FPS	LB	DEG	DEG	FR
415	9.75	31.0	12.20	10.0	8 • 16
413	9.75	31.0	13.30	7.5	8.37
414	9.75	31.0	14.50	5.0	8 • 89
412	14.63	31.0	6.10	7.5	5.02
411	14.63	31.0	7.10	5.0	5•18
410	14.63	31.0	8.00	2.5	5.52

WITHOUT CHINE FLAPS BOW RAMP RETRACTED LCG = 12.5 IN.

450	7·31	31.0	11.80	10.0	11.49
448	7·31	31.0	14.30	5.0	11.78
449	7·31	31.0	17.90	0.0	12.53
447	17.06	31.0	5•50	5.0	4.52

TABLE A3.2

WITH CHINE FLAPS BOW RAMP EXTENDED LCG = 12.5 IN.

RUN	SPEED FPS	LØAD	TRIM DEG	TKANSØM FLAP ANGLE DEG	CHINE FLAP ANGLE DEG	DRAG LB
500	7 • 31	31.0	14.70	10.0	10.0	9.63
497	7.31	31.0	14.90	7.5	15.0	9.87
469	7 • 31	31.0	15.60	7.5	10.0	9.98
468	7 • 31	31.0	15.70	7.5	5.0	9.98
466	7 • 31	31.0	16.40	7 • 5	0.0	10.27
462	9.75	31.0	8 • 40	7 • 5	10.0	5.96
463	9.75	31.0	9.30	7.5	5.0	6.22
467	9.75	31.0	10.40	7 • 5	0.0	6.73
461	14.62	31.0	1.60	7.5	10.0	11.29
460	14.62	31.0	2.60	7 • 5	5.0	3.79
459	14.62	31.0	3.70	7 • 5	0.0	4.04
493	14.62	31.0	4.00	7 • 5	-5.0	3.98
458	14.62	31.0		2.5	0.0	

TABLE A4

SMOOTH WATER DATA FOR CONFIGURATION S-5
WITHOUT CHINE FLAPS LCG = 12.5 IN.

				TRANSOM FLAP			
RUN	SPEED	LØAD	TKIM	ANGLE	DRAG	MWL	<*
	FPS	LB	DEG	DEG	LB	IN	IN
	11.0		DEO	DEG	20	414	414
267	4.88	25.0	1 • 39	2.5	3 • 52	28.0	3.78
	1, 00						
409	7 • 32	25.0	2.64	10.0	9.27	27.9	3.62
405	7.31	25.0	5.07	7 • 5	8.91	27.5	3.91
404	7 • 32	25.0	7.09	5.0	9.22	27.1	4.28
268	7.32	25.0	8 • 45	2.5	8.95	26.2	4.56
399	7.32	25.0	8 • 53	2.5	9.05	26.1	4.53
398	7.31	25.0	8.55	2.5	9.10	26.2	4.53
414	7.31	25.0	10.47	0.0	9•06	26•0	4.83
410	7.31	28 • 0	3.52	10.0	10.54	28.0	4.10
407	7.32	28.0	5.69	7.5	10.32	27.7	4.41
406	7.32	28.0	5.70	7.5	10.42	27.6	4.42
403	7.31	28.0	7.93	5.0	10.53	27.0	4.75
400	7.31	28.0	9 • 47	2.5	10.57	26.3	5.01
413	7.32	28.0	11.28	0.0	10.63	25.7	5.32
411	7 • 32	31.0	4.41	10.0	12.04	28.0	4.64
408	7 • 32	31.0	6 • 42	7.5	11.68	27.8	4.88
402	7.32	31.0	8.76	5.0	11.97	27.3	5.25
401	7.32	31.0	10.33	2.5	12.12	26.5	5.51
412	7 • 32	31.0	12.19	0.0	12.20	25.5	5.79
391	9.76	25.0	7.46	7.5	8 • 68	24.6	3.27
392	9.76	25.0	9.88	5.0	6 • 55	22.7	3.35
269	9.76	25.0	11 • 39	2.5	6-11	20.9	3 • 47
397	9.76	25.0	11 • 44	2.5	6-11	20.8	3 • 45
390	9.76	28.0	8•86	7.5	9.64	24.4	3.62
393	9.76	28.0	11.06	5.0	7.67	22.6	3.68
396	9•76	28.0	12.63	2 • 5	7 • 49	21.0	3.80
389	9.76	31.0	10.09	7.5	10.71	24.7	4.00
394	9.76	31.0	12.33	5.0	9-11	22.4	4.06
395	9.76	31.0	13.74	2.5	ধ∙89	21.6	4.19

*Note: Z is the transom draft defined as the immersion, relative to still water level, of a point formed by the intersection of the aft perpendicular with the base line.

TABLE A4.2

WITHOUT CHINE FLAPS LCG = 12.5 IN.

				TRANSOM			
RUN	SPEED	LØAD	TRIM	FLAP ANGLE	DRAG	MWL	Z
17014	FPS	LB	DEG	DEG	LB	IN	IN
	715	20	026	DEG	LB	110	IIV
386	12.19	25.0	6.05	7.5	6.20	22 · R	1.98
385	12.19	25.0	7.74	5.0	4.67	20.4	2.09
270	12.20	25.0	8.83	2.5	4.98	19-1	2.22
378	12.20	25.0	9.34	2.5	5.20	18.8	2.24
377	12.20	25.0	10.27	0.0	5•55	17.7	2.31
387	12.19	28.0	7.06	7.5	6.55	22.6	2.20
383	12.20	28.0	8.72	5.0	5.62	19.9	2.32
379	12.20	28.0	10 • 42	2.5	6.24	18.9	2.45
382	12.20	28.0	10.85	5.0	6 • 39	18.3	2.50
376	12.20	28.0	11.23	0•0	6•66	17•8	2.57
388	12.19	31.0	8.08	7 • 5	7.15	22.4	2.44
384	12.19	31.0	9.64	5.0	6.64	20.2	2.52
380	12.20	31.0	11.13	2.5	7.21	18.6	2.66
381	12.20	31.0	11.79	5.0	7.57	18.2	2.73
375	12.20	31.0	12.09	0.0	7.74	18•1	2.77
271	14.65	25.0	6 • 58	2.5	4.28	18.3	1.57
369	14.65	25.2	4.08	7 • 5	6.62	23.2	1 • 43
368	14.65	25.2	5.56	5.0	4.17	19.8	1 • 49
363	14.65	25.2	6 • 59	2.5	4 • 37	18 • 1	1.56
361	14.64	25.2	7.79	0.0	4.80	16.2	1.63
362	14,64	25.2	7.82	0.0	4.82	16.5	1.64
370	14.65	28.2	4.85	7.5	6.43	22.6	1.57
367	14.65	28.2	6.24	5•0	4.81	19.8	1.65
364	14.65	28.2	7 • 32	2.5	5.11	17.9	1.70
360	14.64	28•2	8 • 52	0.0	5.63	17 • 3	1.80
371	14.65	31.2	5.64	7 • 5	6.32		1.70
366	14.65	31.2	6.93	5.0	5.58	19.7	1.78
3 65	14.65	31.2	8.01	2.5	5.93	17.8	1.69
359	14.64	31.2	9 • 17	0.0	6 • 43	17.0	1.96

TABLE A4.3

WITHOUT CHINE FLAPS TRANSOM FLAP DEFLECTION = 0 DEGREES

				TRIM			
RUN	SPEED	LØAD	TRIM		DRAG	M WL	Z
	FPS	LB	DEG	IN-LB	LR 211110	IN	IN
		55	520	1 25	20	• • • •	• .,
262	4.88	25.0	1.93	0.0	3.47	28.0	4.07
272	4.88	25.0	5.31	14.9	3.94	27.9	4. 49
280	4.88	25.0	7.37	29 • 8	4.11	27.5	4.77
282	4.88	25.0	12.21	58 • 6	4.90	25.5	5 48
	4.00	23.0		30.0	7.70	23.3	3.40
251	4.88	28 • 0	2.30	0.0	3 • 69	28.0	2.95
273	4.88	28 • 0	5.16	14.9	4.00	27.9	4.77
277	4.88	28.0	7.46	29.7	4.26	27.8	5 • 14
285	4.88	28.0	12.26	58 • 6	5.27	26.1	5.86
-00					0.2.		0.00
256	4.88	31.0	2.44	0 • 0	3-92	28.0	4.70
274	4.88	31.0	5.34	14.9	4.18	28.0	5.14
275	4.88	31.0	7.73	29.7	4. 48	28.0	5.52
288	4.88		12.35	58 • 6	5.52	26.4	6.24
304	7.32	25.0	6.74	-29.8	9 • 58	27.8	4.61
263	7.32	25.0	12.34	0.0	8.77	25.4	5.14
281	7.32	25.0	14.70	29.0	8.31		5.03
283	7.32	25.0	18 • 18	57.0	9.03	20.8	5.22
306	7.31	28.0	7.08	-29.8	11.23	27.9	5.13
252	7.31	28.0	12.86	0.0	10.29	25.4	
279	7.32	28 • 0	15.32	28.9	10.02	23.8	5.52
286	7.32	28.0	19.06	56 • 7	10.68	22.3	5.72
335	7.32	31.0	8.29	-29.7	12.40	27.8	5.63
372	7.31	31.0	12.02	0.0	12.12	26.1	5.80
334	7.32	31.0	12.43	0.0	12.22	25.9	5.88
373	7.32	31.0	14.08	14.5	11.95	25.4	5.95
374	7.32	31.0	16 • 41	28 • 8	11.98	24.2	6.09
276	7.32	31.0	16.82	28.7	12.16	23.6	6.17
290	7.32	31.0	20.19	56.3	12.75	22.3	6.28
333	7.31	33.0	11.07	-29.4	13.26	26.8	6.0R

TABLE A4.4

WITHOUT CHINE FLAPS TRANSOM FLAP DEFLECTION = C DEGREES

RUN	SPEED FPS	LØAD LB	TRIM DEG	TRIM MØMENT IN-LB	DRAG LB	M WL I N	Z IN
316	9•76	25.0	9.62	-59.2	10.65	25.3	4.27
305	9•76	25.0	11.82	-29.4	6.65	22.3	3.77
264	9•76	25.0	14.58	0.0	7.24	18.9	3.85
284	9•76	25.0	15.79	57.7	7.88	16.7	3.49
313	9•76	28•0	11.05	-58.9	11.04	24.9	4.58
307	9•76	28•0	13.07	-29.2	8.03	21.9	4.16
253	9•76	28•0	15.50	0.0	8.53	19.4	4.22
287	9•76	28•0	16.89	57.4	9.36	18.1	3.90
309	9•76	31.0	13.09	-58 · 4	11.83	24.5	4.90
308	9•76	31.0	14.27	-29 · 1	9.58	22.2	4.56
259	9•76	31.0	17.52	0 · 0	10.66	19.6	4.74
291	9•76	31.0	18.00	57 · 1	10.98	17.9	4.33
324 317 265 298 296	12.20 12.20 12.20 12.20 12.20	25.0 25.0 25.0 25.0 25.0	8.19 9.53 10.69 12.11 13.57	-89.1 -59.2 0.0 58.7 87.5	8.82 5.53 5.73 5.32 6.75	20.9 21.0 17.7 14.0	2.92 2.69 2.37 2.05 1.87
326	12.20	28.0	9.25	-88.8	9.22	21.6	3.11
314	12.20	28.0	10.22	-59.0	6.16	26.3	2.85
254	12.20	28.0	11.83	0.0	6.89	18.2	2.62
295	12.20	28.0	13.84	87.4	7.83	13.7	2.14
320	12.20	29.0	9.64	-88.7	8.93	23.0	3.15
328	12.20	31.0	10.25	-88.6	9.69	21.3	3.34
310	12.20	31.0	11.27	-58.8	7.82	21.1	3.10
260	12.20	31.0	13.46	0.0	8.63	17.8	2.93
293	12.20	31.0	14.56	87.1	9.16	14.2	2.43

TABLE A4.5

WITHOUT CHINE FLAPS TRANSOM FLAP DEFLECTION = 0 DEGREES

RUN	SPEED	LØAD	TRIM	TRIM MØMENT	DRAG	MWL	۷
11011	FPS	LB			_		
	112	LB	DEG	IN-LB	LB	IN	IN
339	14.65	25.0	6.32	-119.3	7.05	52.8	2.13
325	14.65	25.0	6.84	-89 • 4	5.31	23.9	2.07
318	14.65	25.0	7 • 47	-59.5	4.72	19.7	1.95
266	14.65	25.0	7.83	0.0	4.71	16.2	1.66
303	14.65	25.0	8 • 58	29.7	5.01	14.8	1.56
302	14.65	25.0	10.32	44.3	5.96	μ	1.41
299	14.65	25.0	11.15	58•9	5.78	P	1.21
						•	
337	14.55	28.0	7.07	-119 - 1	6.88		2.25
338	14.65	28.0	7.07	-119 - 1	6.90	22.5	2.27
327	14.65	28.0	7.55	-89.2	5.74	23.5	2.21
315	14.65	28.0	8.22	-59 • 4	5.51	19.2	2.11
255	14.65	28.0	8.66	0.0	5.59	16.3	1.84
301	14.65	28.0	9.75	59 • 1	6.08	13.5	1.62
321	14.65	29.0	7.75	-89 • 2	5.89		2.25
336	14.65	31.0	7.79	-118.9	6.96	55.5	2.37
329	14.65	31.0	8.12	-89 • 1	6.06	22.4	2.27
330	14.65	31.0	8.12	-89.1	6.11	20.8	2.27
332	14.65	31.0	8.57	-59.3	6.25	19.6	2.21
311	14.65	31.0	9.01	-59 • 3	6.84	19.3	2.30
261	14.65	31.0	9 • 39	0.0	6.57	17.1	2.03
300	14.65	31.0	10.48	59 • 0	7.00	13.3	1.81
294	14.65	31.0	12.41	87.9	8.54	P	1.56
322	14.65	32.0	8 • 46	-89.0	6.65	21.5	2.41

TABLE A4.6

WITH 45 DEGREE CHINE FLAPS TRANSOM FLAP DEFLECTION = 2.5 DEGREES

RUN	SPEED FPS	LØAD LB	TRIM DEG	TRIM MØMENT IN-LB	DRAG	MWL IN	Z I N
1 49 1 48	0.00	25•0 25•0	-3·89 -2·52	-44.9 -30.0	0.00		1•76 2•10
145 131 137	0.00 0.00 0.00	25.0 25.0 25.0	-1.12 0.05 1.94	-15.0 0.0 15.0	0 • 30 0 • 11 -0 • 01		2 · 41 2 · 65 3 · 12
133 135 142 169	0.00 0.00 0.00	25.0 25.0 25.0 25.0	3.58 5.33 7.16 10.16	29•9 44•8 59•5 31•2	-0.02 0.00 -0.03 0.00		3.45 3.88 4.27 4.87
174 213	0.00	25·0 28·0	12·26 -6·12	95·3 -74·6	-0.05 0.03		5•28 1•47
212 203 206 118	0.00 0.00 0.00	28.0 28.0 28.0	-4.98 -2.16 -0.71 0.60	-59.8 -30.0 -15.0 0.0	0.02 -0.06 -0.38 -0.03		1.77 2.45 2.79 3.13
196 177 187	0.00 0.00 0.00	28•0 28•0	2.21 3.79	15.0	0 • 32 - 0 • 02		3.51 3.80 4.21
185 193 218	0.00 0.00 0.00	28•0 28•0	7•16 12•27 15•12	59 • 5 9 7 • 7 115 • 8	-0.04 0.21 0.07		4.62 5.62 6.14
239 238 110 219	0.00 0.00 0.00 0.00	31.0 31.0 31.0 31.0	-4.45 -1.82 0.84 3.98	-59.8 -30.0 0.0 29.9	0.01 0.00 0.11 0.12		2.23 2.86 3.46 4.18
224 234 2 25	0.00 0.00 0.00	31 • 0 31 • 0 31 • 0	4•09 5•58 7• 24	29•9 44•8 59•5	0 • 00 0 • 14 -0 • 01		4·27 4·57 4·93

TABLE A4.7

WITH 45 DEGREE CHINE FLAPS TRANSOM FLAP DEFLECTION = 2.5 DEGREES

RUN	SPEED FPS	LØAD LB	TRIM DEG	TRIM MOMENT IN-LB	DKAG LB	M WL I N	Z I N
	, , ,		320	111 25		•11	2.1
124	4.85	25.0	0 • 45	0.0	3.62	28.0	3.50
132 134	4•86 4•86	25·0 25·0	6.56 9.15	29 • 8 44 • 4	4• 09 4• 45	26•5 25•9	4•35 4•67
111 119	4•83 4•83	28•0 28•0	0.50 0.70	0 • C 0 • O	3·89 3·67	28•0	3•77 3•80
198 194	4·82 4·81	28.0 28.0	3.98 4.02	15.0 15.0		28.0	4·32 4·31
175 178	4·85 4·83	28.0 28.0	6.84 11.71		4• 48 5• 23	27·3 25·4	4.69
103	4.75	31.0	0.28	0.0	3.63	28•0	3.87
220 226	4.88 4.87	31.0 31.0	7·24 12·00	29 • 8 58 • 7	4.97 6.15		5.08 5.77
142	מ מנ	05 0		- 1 A O	u su	07.1	A 11 C
163 125	7 · 35 7 · 37	25·0 25·0	6 • 49 8 • 9 6	-14.9 0.0	8 · 32 7 · 83	26·1 24·9	3.84 4.06
136 139 140	7 • 37 7 • 38 7 • 38	25.0 25.0 25.0	11•25 13•22 14•76	14•7 29•2 43•5	7 • 25 7 • 05 7 • 39	23•4 21•8 20•6	4.12 4.20 4.27
141	7 • 38 7 • 35	25·0 25·0	16.09 16.11	57 • 6 57 • 6	7.93 8.05	19.7	4.37
165	7 • 35	25.0	18.16	78.4	9.02	18.6	4.50
19 9 204	7 • 37 7 • 32	28 • 0 28 • 0	5 · 32 7 · 6 4	-29.9 -14.9	9 • 6 4 9 • 47	27 • 1 26 • 3	4•12 4•30
112 120	7 • 35 7 • 35	28·0	10.02 10.09	0.0	9.11 8.97	24.7	4.51 4.55
195 197	7 • 34 7 • 34	28•0 28•0	11•94 11•98	14.7 14.7	9 • 18 5 • 57	24·3 24·0	4 • 59 4 • 59
176 179	7 • 38 7 • 35	58 • 0 58 • 0	14•12 16•95	29 • 1 57 • 4	8•74 9•41	22•6 20•0	4•65 4•54
250	7.34	31.0	6.27	-29.8	0.99	27.5	4.61
104 221 227	7 • 25 7 • 34 7 • 32	31 • 0 31 • 0 31 • 0	10•74 14•95 17•94	0•0 29•0 57•1	10 • 46 10 • 46 11 • 16	25•2 23•3 21•5	4.96 5.15 5.36

TABLE A4.8

WITH 45 DEGREE CHINE FLAPS TRANSOM FLAP DEFLECTION = 2.5 DEGREES

				TRIM			
RUN	SPEED	LØAD	TRIM	MOMENT	DRAG	MWL	۷
	FPS	LB		IN-LB		IN	IN
150	9.75	25.0	6.47	-44.7	9.84	25.2	3.28
147	9.76	25.0	8.28	-29.7	7.08	23.1	3.08
144	9.77	25.0	9 • 45	-14.8	6.04	21.7	2.99
126	9.77	25.0	10 • 40	0.0	5.64	20.4	3.06
138	9.78	25.0	11.54	29 • 4	6.02	18.5	2.91
155	9.76	25.0	12.99	5੪ • 5	6.72	16.5	2.87
166	9.75	25.0	14.20	80.0	7.25	15.4	2.81
173	9.78	25.0	14.97	94.2	7.51	14.3	2.75
207	9.76	28.0	6.64	-59 • 6	12.09	25.9	3.71
200	9.77	28 • 0	9.58	-29· ú	7·78	22.9	3.39
205	9.74	28.0	10.57	-14.7	6.75	21.8	3.30
113	9.74	28.0	11.51	0.0	6.54	20.6	3.36
180	9.75	28.0	14.05	58 • 2	8.03	16.6	3.23
188	9.75	28.0	16 • 10	96 • 1	8.87	15.4	3.15
190	9.74	28.0	16.12	96 • 1	9.10	14.7	3.16
189	9.74	28.0	16.25	96.0	9.35	14.8	3.17
240	9.75	31.0	9.75	-59 • 1	13.15	25 - 1	4.33
237	9.76	31.0	10.82	-29.5	8 • 89	22.8	3.77
105	9.74	31.0	12.67	0.0	7.86	20.7	3.68
222	9.75	31.0	13.75	29 • 1	8 • 65	19.2	3.62
228	9.75	31.0	15.08	57.9	9 • 39	17.0	3.59
151	12.21	25.0	6.55	- 44.7	5.70	22.2	2.01
146	12.22	25.0	7 • 45	-14.9	4-97		1.92
127	12.22	25.0	7.82	0.0	4.81	18.0	1.96
159	12.20	25.0	8.61	29.7	5.04	16.7	1.82
156	12.22	25.0	9.36	59 • 2	5.28	14.9	1.69
167	12.21	25.0	10.07	81.2	5∙ 5४	13.8	1.62
172	12.24	25.0	10.52	95-9	5.67	12.8	1.56

TABLE A4.9

WITH 45 DEGREE CHINE FLAPS TRANSOM FLAP DEFLECTION = 2.5 DEGREES

RUN	SPEED FPS	LØAD LB	TRIM DEG	TRIM MOMENT IN-LB	DRAG LB	MWL IN	Z I N
208 201 114 181 191 217	12.18 12.22 12.19 12.22 12.20 12.17	28.0 28.0 28.0 28.0 28.0 28.0	6.98 7.86 8.75 10.18 11.40 12.51	-59.6 -29.7 0.0 59.1 98.0 117.2	7.68 5.35 5.46 6.26 6.90 7.53	22.8 20.7 18.7 15.6 13.6	2.34 2.16 2.18 1.93 1.76 1.79
242 246 122 106 223 229	12.20 12.20 12.17 12.18 12.18 12.18	31.0 31.0 31.0 31.0 31.0	7.98 8.81 9.72 9.79 10.31 11.01	-59.4 -29.6 0.0 0.0 29.5 58.9	7.50 6.32 6.48 6.55 6.99 7.33	22.5 20.7 18.7 17.8 15.9	2.45 2.37 2.39 2.34 2.24 2.14
152 128 160 157 168	14.65 14.66 14.64 14.65 14.64	25.0 25.0 25.0 25.0 25.0	5.13 5.76 6.30 6.78 8.79	-44.8 0.0 29.8 59.6 81.5	4.54 4.35 4.38 4.45 5.44	20.9 17.7 16.1 14.4	1 • 48 1 • 40 1 • 30 1 • 18 0 • 97
214 209 202 115 182 192	14.65 14.65 14.66 14.64 14.65 14.63	28.0 28.0 28.0 28.0 28.0 28.0	5.37 5.51 5.98 6.49 7.39 9.20	-74.7 -59.7 -29.8 0.0 59.5 98.7	7.63 5.78 4.80 4.78 5.16 7.18	22.6 21.7 19.8 17.7 14.8	1.80 1.69 1.58 1.59 1.35 1.29
243 247 123 107 230	14.66 14.66 14.64 14.62 14.66	31.0 31.0 31.0 31.0	6.32 6.67 7.16 7.17 7.99	-59.6 -29.8 0.0 0.0 59.4	5.86 5.54 5.65 5.57 5.97	21.2 19.4 17.8	1.81 1.72 1.73 1.71 1.51

TABLE A4.10

WITH 45 DEGREE CHINE FLAPS TRANSOM FLAP DEFLECTION = 2.5 DEGREES

				TRIM			
RUN	SPEED	LØAD	TRIM	MOMENT	DRAG	MWL	Z
	FPS	LB	DEG	IN-LB		IN	IN
						0.0	
153	17.15	25.0	3.97	-44.9	4 • 46		1.10
129	17 • 16	25.0	4 • 38	0.0	4 • 28	17 • 4	1.11
161	17 - 14	25.0	4.66	29 • 9	4.15	15.7	0.96
170	17.16	25.0	4.83	44.8	4.14	14.8	0.95
158	17.13	25.0	5.90	59 • 7	5.28	۲	0.82
210	17.10	28.0	4.33	-59 • 8	5.32		1.32
215	17.09	28.0	4.56	-74.8	6.06	21.6	1 • 43
121	17.13	28.0	4.96	0.0	4.58	17.6	1.24
116	17.13	28.0	4.97	0.0	4.59		
183	17.16	28.0	5.53	59 • 7	4.69	14.5	1.03
244	17.09	31.0	4.98	-59.8	5.42	20.7	1.42
248	17.09	31.0	5.19	-29.9	5.31	19.1	1.34
108	17.12	31.0	5.41	0.0	5.20	17.5	1 • 33
232	17.09	31.0	5.90	44.8	5.35	15.4	1.21
231	17.09	31.0	6.65	59 • 6	6•88	۲	1.19
	,						
		05.0			. = 0	00 5	
154	19.64	25.0	3.13	-44.9	4.79	20.5	0.67
130	19.64	25.0	3 • 40	0.0	4.46	17.2	0.84
162	19.63	25.0	3.63	29.9	4.29	15.5	0.77
171	19.66	25.0	4.79	44.8	5.80	Р	0.71
216	19.50	28•0	3.44	-74.9	6•78	21.9	1.10
211	19.55	28.0	3 • 49	-59.9	5 • 48	21.1	1.03
117	19.61	28.0	3.37	0.0	4.70	17.5	1.01
186	19.64	28.0	4.10	44.9	4.60	14.9	0.82
184	19.64	28 • 0	4.89	59 • ช	5.75	Ρ	0.78
					- · -	·	
245	19.52	31.0	3.99	-59.9	5.53	20.5	1.14
249	19.52	31.0	4.08	-29.9	5.35	19.0	1.07
109	19.61	31.0	4.25	0.0	5.24	17.3	1.07
235	19.51	31.0	4 • 48	29.9	5.29	16.1	0.96
233	19.50	31.0	5.36	44.8	7.77	P	1.01

FIGURE A1 EFFECT OF TRIM ON DRAG, 14.64 FPS (30 KNOTS)

 $R - \Delta tan\tau$, lb.

FIGURE A2 EFFECT OF WETTED LENGTH ON DRAG, 14.64 FPS (30 KNOTS)

Model Added Resistance in Waves, lb.

FIGURE A3 ADDEC RESISTANCE IN WAVES

 $R - \Delta$ tant, lb.

FIGURE A4 MODEL DRAG INCREMENT OF P-1 WITHOUT CHINE FLAPS AT SPEED CORRESPONDING TO 20 KNOTS

DISTRIBUTION LIST Contract N00014-75-C-0746

Copies		Copies	
2	Commander NAVAL SEA SYSTEMS COMMAND National Center Building No. 3 Washington, DC 20361 Attn: Code 03221 (1)	1	NAVAL SHIP ENGINEERING CENTER Norfolk Division Norfolk, VA 23511 Attn: Code 6661
	Code PMS 300A1 (1)	2	Commandant HEADQUARTERS U.S. MARINE CORPS
12	Chief of Naval Research OFFICE OF NAVAL RESEARCH 880 N. Quincy St. Arlington, VA 22217		Arlington Annex Washington, DC 20380 Attn: Code LMW
	Attn: Code 100M (1) Code 102 IP (6) Code 220 (1) Code 438 (4)	2	U.S. MARINE CORPS DEVELOPMENT AND EDUCATION COMMAND M&L Division Quantico, VA 22134 Attn: Col. Chace
12	Director DEFENSE DOCUMENTATION CENTER Building 5, Cameron Station Alexandria, VA 22314	1	U.S. MARINE CORPS TACTICAL SYSTEMS SUPPORT ACTIVITY Amphibian Vehicle Test Branch Marine Corps Base
10	Commander DAVID TAYLOR NAVAL SHIP RESEARC	н	Camp Pendleton, CA 92055
	AND DEVELOPMENT CENTER Bethesda, MD 20084 Attn: Code 112	1	Commanding Officer OFFICE OF NAVAL RESEARCH Branch Office 715 Broadway
1	Commanding Officer NAVAL PERSONNEL RESEARCH AND DEVELOPMENT CENTER		New York, NY 10003
	San Diego, CA 92152 Attn: Code 2784	2	BELL AEROSPACE CO. Buffalo, NY 14240 Attn: Mr. N. Economou
6	Director NAVAL RESEARCH LABORATORY Washington, DC 20375 Attn: Code 2627	2	FMC CORPORATION Ordnance Division 1105 Coleman Ave. Box 1201 San Jose, CA 95108 Attn: Mr. R. Vaughan

Copies

- PACIFIC CAR & FOUNDRY CO. 1400 N. 4th St. Renton, WA 98055
- JOHN K. ROPER ASSOCIATES Hancock, NH 03449